
(12) United States Patent
Stone et al.

US007728213B2

US 7,728,213 B2
Jun. 1, 2010

(10) Patent No.:
(45) Date of Patent:

(54) SYSTEMAND METHOD FOR DYNAMIC
NOTE ASSIGNMENT FORMUSICAL

(75)

(73)

(*)

(21)

(22)

(65)

(63)

(51)

(52)
(58)

(56)

SYNTHESIZERS

Inventors: Christopher L. Stone, Hidden Hills, CA
(US); Gary D. Davis, West Hills, CA
(US)

Assignee: The Stone Family Trust of 1992,
Hidden Hills, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 536 days.

Appl. No.: 11/411,589

Filed: Apr. 25, 2006

Prior Publication Data

US 2006/0236848A1 Oct. 26, 2006

Related U.S. Application Data
Continuation-in-part of application No. 10/684,296,
filed on Oct. 10, 2003, now Pat. No. 7,109,406.

Int. C.
A63H 5/0 (2006.01)
U.S. Cl. ...
Field of Classification Search

84/609; 446/408
- - - - - - - - - - - - - - 84/609,

84/622, 645; 446/408
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

4,703,681 A * 1 1/1987 Okamoto 84.478
5,095,800 A * 3/1992 Matsuda 84f618
5,703,312 A 12/1997 Takahashi et al.

1110

1102

1104

Keyboard

5.998,724 A
6,369,311 B1*
7,005,572 B2
7,169,997 B2

12, 1999
4, 2002
2, 2006
1/2007

Takeuchi et al.
Iwamoto
Fay
Kay

OTHER PUBLICATIONS

Authorized Officer: Jeffrey Donels, “International Search Report.”
International Searching Authority, October 12, 2006, pp. 1-4.
“Garritan Personal Orchestra Ensemble Building.” Garritan Orches
tral Libraries, http://web.archive.org/web/20041011021446/gar
ritan.com/GPO-ensemble.html, Oct. 11, 2004.
“Garritan Personal Orchestra Controls.” Garritan Orchestral Librar
ies, http://web.archive.org/web/20041011020846/garritan.com/
GPO-control.html, Oct. 11, 2004.

(Continued)
Primary Examiner Jianchun Qin
(74) Attorney, Agent, or Firm Nixon Peabody LLP.; Joseph
Bach, Esq.

(57) ABSTRACT

An embodiment of the invention creates a method and system
for assigning notes to be played by a musical synthesizer to a
predetermined number of instrument voices available to be
Sounded by said musical synthesizer, so that the musical
synthesizer may emulate the sound of a live orchestra or other
ensemble. The method includes the steps of building an array
based on the number of notes to be played and the number of
instrument voices available to play Such notes, and allocating
notes to the Voices pursuant to algorithmic determination. As
notes are released or newly played, all notes are dynamically
reassigned to instrument Voices so that, to the extent practi
cable, all channels play almost all the time. Additional meth
odology provides for correct assignment of notes across mul
tiple different sections (or types) of instruments for purposes
of real time orchestration.

19 Claims, 24 Drawing Sheets

1100

1.

Note Allocation Processor

Note Register

Note list Register 1115

1120

125

1130

1135

14 Current Channel Register

Channels left Register

Attack Flags

1145

150

US 7,728.213 B2
Page 2

OTHER PUBLICATIONS “Garritan Personal Orchestra Features.” Garritan Orchestral Librar
ies, http://web.archive.org/web/20041009 173443/garritan.com/
GPO.html, Oct. 11, 2004.

“Garritan Orchestra FAQ Page.” Garritan Orchestral Libraries, http://
www.garritan.com/FAQ.html, Oct. 11, 2004. * cited by examiner

U.S. Patent Jun. 1, 2010 Sheet 1 of 24 US 7,728,213 B2

10

101
Keyboard

102 Note Allocation Processor

105
Note Counter

104 Channel Comparison 106
Counter

Old Note/Channel 109
List

Sorted Note List 110

111 New Note/Channel
List

Channel Command
Buffer

12

103

Fig. 1

U.S. Patent Jun. 1, 2010 Sheet 2 of 24 US 7,728,213 B2

Note Allocation Routine -"
201

Receive signal from input system

202
205

Decrement
NO Counter by one

203 Yes 2O6
N Remove note from

Increment Counter e note-on list
by one

ls this
a note- On
signal?

2O7 208
Send all notes-off
Command to all

204

Add note to No
note-on list channels

Yes

209

Sort note-on list
by pitch

Select note allocation
algorithm

Create new
note/channel list

To Step 212

210

211

Fig. 2a

U.S. Patent Jun. 1, 2010 Sheet 3 of 24

From Step 211

v 212

Compare new note/channel
list with old note/channel
list subroutine

213
note for the

channel corresponding
to the value of the channel
Counter the same on both

note/channel
NO 214 15

ls
there a

note allocated to
the channel? No

Yes

the note
the same as any
note On the Old
note/channel

Yes 218

Send note-on command
with Soft attack instruc -
tion to channel Com -
mands buffer

Channel
Comparison counter =

219 increment
channel
comparison number of channels O
counter by note/channel list?
One

Yes
221

Send Commands from channel Commands
buffer to player, write the new note/channel
list into old note/channel list memory location

Send note-on command
With hard attack
instruction to channel
commands buffer

US 7,728,213 B2

Send note-off command
to channel Commands
buffer

and set channel comparison Counter to one
Fig.2b

U.S. Patent Jun. 1, 2010 Sheet 4 of 24 US 7,728,213 B2

301

Assignment Table, Eight Cello Section
One Note
Top-Weighted

Channel 1; the note on sorted note list
Channel 2: the note on sorted note list
Channel 3: the note on sorted note list
Channel 4: the note on Sorted note list
Channel 5: the note on sorted note list
Channel 6: the note on sorted note list
Channel 7: the note on sorted note list
Channel 8: the note on sorted note list

Assignment Table, Eight Cello Section
Three Notes
Top-Weighted

Channel 1: the highest note on sorted note list
Channel 2: the highest note on sorted note list
Channel 3: the highest note on sorted note list
Channel 4: the second highest note on sorted note list
Channel 5: the second highest note on sorted note list
Channel 6: the second highest note on sorted note list
Channel 7: the lowest note on sorted note list
Channel 8: the lowest note on SOrted note list

305

Assignment Table, Eight Cello Section
Five Notes
Top-Weighted

Channel 1: the highest note on sorted note list
Channel 2: the highest note on sorted note list
Channel 3: the second highest note on sorted note list
Channel 4; the second highest note on sorted note list
Channel 5: the third highest note on sorted note list
Channel 6: the third highest note on sorted note list
Channel 7: the fourth highest note on sorted note list
Channel 8: the lowest note or sorted riote list

Assignment Table, Eight Cello Section
Seven Notes
Top-Weighted

Channel 1: the highest note on sorted note list
Channel 2: the highest note on sorted note list
Channel 3: the second highest note on sorted note list
Channel 4; the third highest note on sorted note list
Channel 5: the fourth highest note on sorted note list
Channel 6: the fifth highest note on sorted note list
Channel 7: the sixth highest note on sorted note list
Channel 8: the lowest note on sorted note list

Fig. 3

Assignment Table, Eight Cello Section
Two Notes
Top-Weighted

Channel 1: the higher note on sorted note list
Channel 2: the higher note on sorted note list
Channel 3: the higher note on sorted note list
Channel 4: the higher note on sorted note list
Channel 5: the lower note on sorted note list
Channel 6: the lower note on sorted note list
Channel 7: the lower note on sorted note list
Channel 8: the lower note on sorted note list

Assignment Table, Eight Cello Section
Four Notes
Top-Weighted

Channel 1: the highest note on sorted note list
Channel 2: the highest note on sorted note list
Channel 3: the second highest note on sorted note list
Channel 4: the second highest note on Sorted note list
Channel 5: the third highest note on sorted note list
Channel 6: the third highest note on sorted note list
Channel 7: the lowest note on sorted note list
Channel 8: the lowest note on sorted note list

Assignment Table, Eight Cello Section
Six Notes
Top-Weighted

Channel 1: the highest note on Sorted note list
Channel 2: the highest note on sorted note list
Channel 3: the second highest note on sorted note list
Channel 4: the second highest note on sorted note list
Channel 5: the third highest note on sorted note tist
Channel 6: the fourth highest note on sorted note list
Channel 7: the fifth highest note on sorted note list
Channel 8: the lowest note on sorted note list

Assignment Table, Eight Cello Section
Eight Notes
Top-Weighted

Channel 1: the highest note on sorted note list
Channel 2: the second highest note on sorted note list
Channel 3: the third highest note on sorted note list
Channel 4: the fourth highest note on sorted note list
Channel 5: the fifth highest note on sorted note list
Channel 6; the sixth highest note on sorted note list
Channel 7: the seventh highest note on sorted note list
Channel 8: the lowest note on sorted note list

U.S. Patent Jun. 1, 2010 Sheet 5 of 24 US 7,728,213 B2

initialization
Top Weighted Diuisi
ECC Assign SoftAttack flags 400

Set NumberOfChannels 402
equal to number of paths

Initialize Channels left 405
Counter F if of Channels

List Channels by 410
Oriority from 1 to n

Begin Process 1 Detect Notes to be played 415
& Set NumberOfNotes

initialize Nofelindex F 1 420

Step 1. Compute Number List Notes to be played 425
of Channels Per Note by integer (MIDI) value

as ListOfNotes

ls the
Noteindex
value < the

umberOfNotes
?

430

435
For current Noteindex value, NumChannels =

Channelsleft + (NumberOfNotes +1-Noteindex)

Does the
above division

yield an integer value
for Num Channels

Set the Nunn Channels value as the
number of channels to which the
Current note will be assigned

Set the Nunn Channels value, minus
the remainder, +1 as the number of
channels to which the Current note

will be assigned

Subtract the number of channels
just calculated from the

Channels left counter value

In Crement Noteinder 460
Go to Step 2,

Channel Allocation Fig. 4A

U.S. Patent Jun. 1, 2010 Sheet 6 of 24 US 7,728,213 B2

Step 2. Channel Allocation
Top Weighted Divisi 465
No Overflou Set Noteindex = 1

Set ChannelNumber F 1

ls the
Noteindex
values the

NumberOfNotes
?

475
No

Yes

Establish the Current note to be
processed by referring to the 480

Current Noteindex Value
for ListOfNotes

ls the 497
ChannelNumber 485

value < the No
NunnberOfChannels

for the Current
ListOfChannels

flag set (true

490 489
No

Play the CurrentNote Play the CurrentMote
with normal attack With Soft attack

495
Increment ChannelNumber

End Process 1 499

Fig. 4B

U.S. Patent Jun. 1, 2010 Sheet 7 of 24 US 7,728,213 B2

Bottom Weighted Divisi Initialization
No Ouerflou Assign SoftAttack flags 4300

Set NumberOfChannels 4302
equal to number of paths
Initialize Channels left 4305
counter = i of Channels

List Channels by
priority from 1 to n

Begin Process 1 Detect Notes to be played
& set NumberOfNotes

initialize NOfelindex = 1 4320

Step 1. Compute Number List Notes to be played 4325
of Channels Per Note by integer (MID1) value

as ListOfNotes

431 O

4315

ls the
Noteindex
value < the

NumberOfNotes

Yes

Arraylindex =
NumberOfNotes - Noteindex +1

For current ArrayIndex value, NumChannels =
Channels left + (NumberOfNotes +1-Noteindex)

4330

4340

4350

Set the Num Channels value as the
number of Channels to which the
current note will be assigned

above division
yield an integer value
for Nunn Channels

Set the Num Channels value, minus
the remainder, +1 as the number of
channels to which the Current note

will be assigned

4355

4360

Subtract the number of channels
just calculated from the

Channels left Counter value

Increment the Noteindex by 1 Go to Step 2,
Channel Allocation Fig. 4C 4365

U.S. Patent Jun. 1, 2010 Sheet 8 of 24 US 7,728,213 B2

Bottom Weighted Divisi Step 2. Channel Allocation
No Overflow

Set Noteindex = 1 4400

Set ChannelNumber = 1 set channelNumber- 4405

S the
Noteindex
Values the

NumberOfNotes
?

4.410
No

Yes

Establish the Current note to be
processed by referring to the 44.15

Current Noteindex value
for ListOfNotes

S the 4420 4435
ChannelNumber

value S the NO
NumberOfChannels

for the Current
ListOfChannels

index?

Yes

4423

SoftAttack
ag Set (true)

4.425 4427
NO

Play the CurrentNote Play the CurrentNote
With normal attack with soft attack

increment ChannelNumber 4430

Fig. 4D

U.S. Patent Jun. 1, 2010 Sheet 9 of 24 US 7,728,213 B2

- - - Initialization

Subtractive Divisi Overflow -
Primary Algorithm Set NumberOfChannels 500

equal to number of paths

Create ranked ListOfChannels
to receive divisi based on
priority or pitch; begin at 1

Detect Notes to be played
8 Set NumberOfNotes 510

List Notes to be played
by integer (MIDI) value

as Listofotes

Begin Algorithm 3
Set Notes Leff F 520
NurnberOfNotes

Set Channelindex F 525
NumberOfChannels

505

515

Step 1. Compute Size of
Each Group

ls the
Channelindex

value > 0

Yes

Groupindex= NumberOfChannels
-Channellindex + 1

For current Groupindex value, GroupSizes =
Notes left + Channellindex

Does the
above division

yield an integer value
for GroupSizes

NO

Round GroupSizes up
to next integer value

For current Groupindex value, Notes left =
Notesleft - GroupSizes

DeCrement the
- Channelindex by 1

Go to Step 2. Initialize
Assigned ToGroup Array

Fig. 5a

U.S. Patent Jun. 1, 2010 Sheet 10 of 24 US 7,728,213 B2

Step 2. initialize Noteindex = 1 565 Subtractive Divisi Overflow -
Initialize Primary Algorithm
Assigned ToGroup
array

ls the
Noteindex
values the

NumberOfNotes
?

570
NO

575

ls the
Noteindex
values the

Yes
Initialize Noteindex F 1 62O

For Current Noteindex value,
set Assigned ToGroup flag = false

Increment the
Noteindex by 1 580

NurnberOfNotes
Step 3. Create the h ?
individual note groups nCrement the

Groupindex by 1 645 630
Y

Initialize Groupindex = 1 585 eS
For current Noteindex value,
Set Note Value = ListOfNotes 635

For Current Noteindex value,

625
No

st She 590
No Groupindex if Note Value belongs to Notegroup

values the then set Assigned ToGroup flag F true
NumberOfChannels

2
Increment the 640
Noteindex by 1 Yes

CurrentGroupSize = Current value of
GroupSizes for Groupindex 600

605 For CurrentGroupSize value, Find
NarrowestGrouping within ListOfNotes

Set Notegroup to 610
value of above parse

For current Groupindex value, 615
set ListOfCroups = Note(Group

Step 4. Sort groups
according to pitch

650 Go to Step 5 For current ListOfCroups value p 5. > Play the appropriate
SortGroups fromTopToBottom notes for each channel

Fig. 5b

U.S. Patent Jun. 1, 2010 Sheet 11 of 24

Initialize ChannelNunber = 1 660

ls the
ChannelNumber

values the
unberOfChannel

?

Yes

- For Current ChannelNumber value,
Notegroup = ListOfCroups

Initialize Noteindex = 1

NoteCount = size of Notegroup

NO

ls the
Noteindex
values the
NoteCount

Yes

For Current Noteindex value, 690
CurrentMote = Notegroup

692

Yes
flag set (true)

695

nCrement the 700
Noteindex by 1

End Process 3 710
(Main Procedure)

Fig. 5C

US 7,728,213 B2

increment the 705
ChannelNumber by 1

697
NO

Play Current Note with normal Play Current Note with soft
attack on ChannelNumber attack on ChannelNumber

U.S. Patent Jun. 1, 2010

Initialization
800

Set NarrowestPitchRange = 128

805
Set NarrowestPitchrangelindex = -1

Set NotegroupSize = 0 810

Begin subsidiary
procedure 815

ls the No s s
GroupSize 3,9. 9SQ value > 1 SS

CS s
Yes

S
OuterLoopLimit = NumberOfMotes Q

- GroupSize 820

Set OuterNoteindex = 1 825

OuterNoteindex
< OuterLoopLimit

set Valid Grouping flag = true 840

Set InnerNoteindex = 845
OuterNoteindex

Set innerLoopLimit = 850
OuterNoteindex + GroupSize -1

InnerNoteindex
< innerLoopLimit

?

Fig. 6a

Sheet 12 of 24 US 7,728,213 B2

Subtractive Divisi
Overflow - Secondary

Algorithm.

Assigned ToGroup 860
per innernoteindex) = true

or is Assigned to Group
per finnerNoteindex +1)

= true
2

No

Yes
865

set ValidGrouping flag = false
870

Set PitchSpread value of this Group
= (listOfNotes at (Innernofelindex)
-(ListOfNotes at InnerNoteindex+1))

Set PitchRange value of this Group
= PitchRange + PitchSpread

increment the 875
InnerNoteindex by 1 880

900
No ls

Valid Grouping
flag for this group

= true?

ls the
(PitchRange

3. NarrowestPitch.Range) OR
is (Weighting = Bottom Weighting)
AND (PitchRange = Narrowest

PitchRange)

Yes
910

Set NarrowestPitchRange
= Pitch Range

Set NarrowestPitchRangelindex
= OuterNotelindex 915

increment the 920
OuterNoteindex by 1

U.S. Patent Jun. 1, 2010 Sheet 13 of 24 US 7,728,213 B2

Subtractive Divisi Overflow -
Secondary Algorithm,
continued 'A' s'B'

From Test result"No" From Test Result "NO"
GroupSize > 1 test of OuterNoteindex

(per Fig. 6a) test (per Fig. 6a)

950 1000 1005
Set Noteindex = 1

NoteAssigned = false
END
Sub

routine

Yes

Set Noteindex
= NarrowestPitch.Rangelindex

Set LoopLimit =
NarrowestPitchRangelindex

+ GroupSize

995 1010
ls the

(Noteindex
< NumberOfNotes) AND
NoteAssigned = false

END
Sub

routine 1015

Yes

For the current Noteindex, set
Current Note = ListOfNotes

s
Assigned ToGroup
for current Noteindex

= false

Yes

Increment the
Notegroupindex by 1

For the current NoteCroupindex
Notegroup = CurrentNote

set NoteAssigned flag
= true

increment the
Noteindex by 1

1025

ls the
Noteindex END
< Looplimit ife

2

Yes
1030

For the Current Noteindex, Set
CurrentMote = ListOfNotes

Increment the
Notegroupindex by 1

For the current Note(Groupindex
Notegroup = Current.Note

Increment the
Noteindex by 1

1035

1040

Fig. 6b

U.S. Patent Jun. 1, 2010 Sheet 14 of 24 US 7,728,213 B2

Additiue Diuisi- Initialization

No Overflou Sort Listofofes 1100
from Highest to Lowest

Begin Algorithm 4 Set Noteindex = 1 1105

1110

No END 1115
Algorithm 4

Yes
1120

For current Noteindex value,
Current Note = ListOfNotes

1155 1125
Priority Number = Noteindex

increment the t Path Index = 1 1130
Noteindex by 1 Set Path Index

ls the
Noteindex S

Numberotnotes

ls the
Pathfindex S.

NumberOfPaths
NO

No 1 current Pathlndex
is PathPriority =
PriorityNumber

Yes

Distribute the Current Note to the
Path referenced by Pathindex

increment the
Pathlindex by 1

Fig. 7

U.S. Patent Jun. 1, 2010 Sheet 15 of 24 US 7,728,213 B2

Additive Divisi Overflow -
Primary Algorithm

Begin Algorithm 5

Step 1. Compute Size of Set Notes eff 1200
Each Group equal to NumberOfNotes

Set PriorityNumber equal 1205
to NumberOfHriorities

Yes

Groupindex= NumberOfPriorities 1215
-PriorityNumber +1

For current Groupindex value, GroupSizes =
Notesleft + PriorityNumber 1220

1225

DOes the
above division

yield an integer value
for GroupSizes

No 1230

Round GroupSizes up
to next integer value

Yes

For current Groupindex value, Notesleft F 1235
Notes left - GroupSizes

DeCrement the 1240
PriorityNumber by 1

Go to Step 2. Initialize
AssignedToGroup Array

Fig. 8a

U.S. Patent Jun. 1, 2010 Sheet 16 of 24 US 7,728,213 B2

Step 2. Initialize Noteindex = 1 1245 Additive DVZ Diuisi
initialize Primary Algorithm Assigned ToGroup
array

ls the 1250
Noteindex

NO values the
NurnberOfNotes

1255
Yes

For Current Noteindex value,
set Assigned ToGroup flag = False

1260
increment the 6
Noteindex by 1

1265

ls the
Noteindex
Values the

NumberOfNotes
p Step 3. Formulate

Groupings Increment the
Initialize Groupindex = 1 Groupindex by 1 1330

1270
Set GroupingSuccessful = True For Current Noteindex value,

Set Note Value = ListOfNotes

is the
(Groupindex For

Current Noteindex
1275

3.
No Numi-tues value does the Note Value

AND is belong to the
GroupingSuccessful Notegroup

= true)
2

Yes Set AssignedToGroup flag = True

For GroupSize defined by Groupindex increment the
Find NarrowestGrouping within 1280 Noteindex by 1

ListOfNotes

1285
Set GroupingSuccessful False

1300

ls the
Notegroup
size = 0 Yes

No

For current Groupindex value, 1290
set ListOfCroups = NoteCGroup

Set Noteindex = 1 1295

(Continued) Fig. 8b

U.S. Patent Jun. 1, 2010 Sheet 17 of 24 US 7,728,213 B2

a Step 3. Formulate
Additive Divisi Overflow - Groupings (Continued)
Primary Algorithm

1335

NO
GroupingSuccessful

Sort Groups
YeS According to Pitch

For current ListOfCroups, 1340
SortGroupsfrom TopToBottom

according to pitch
Distribute Notes
According to Divisi Paths

Set PriorityNumber = 1 1345

ls the
PriorityNumber

value < the
NurnberOfFriorities

END
Algorithm 5

Yes

For current PriorityNumber,
set Notegroup = ListOfCroups

For Curent
PriorityNumber is
PriorityGroupSize

Perform Subtractive divisi of
Noteoroup among paths with Com
mon priority equal to PriorityNumber

Go to Subsidiary Procedure #1,
"DistributeNoteoroup ToSingleDivisiPath"

(See Fig. 8e)

increment the
PriorityNumber by 1

(Continued)

Fig. 8c

U.S. Patent Jun. 1, 2010 Sheet 18 of 24 US 7,728,213 B2

Step 3. Formulate
Groupings (Continued) Additiue Divisi Ouerflou -

Primary Algorithm

Set Noteindex = 1

Set PriorityNumber = 1

1395

1385

1390

ls the
PriorityNumber NO

values the 1400
NurnberOfPriorities Algorithm 5

For current PriorityNumber, 1405
set NoteCount = GroupSizes

Set Countlindex = 1 1410

Countlindex
Value < the
NoteCourt 1450

Increment the
PriorityNumber by 1

PriorityNumber ref. by Countindex
= note defined by Noteindex

in ListOfNotes

Increment Noteindex by 1 1425

Increment Countlindex by 1 1430 1445

Perform Subtractive divisi of
1435 Notegroup among paths with Com
N mon priority equal to PriorityNumber
O

1420

For
Current

PriorityNumber
is the

PriorityGroupSize
= 1 ?

1440 Go to Subsidiary Procedure #1,
"DistributeNotegroup loSingleDivisiPath"

(See Fig. 8e)

Fig. 8d

U.S. Patent Jun. 1, 2010 Sheet 19 of 24 US 7,728,213 B2

Note Distribution to single divisipath
with equal Priority Number for playback

Set Path Nurnber = 1 1455

1460
Set PriorityFound = False

Additive Divisi Ouerflow -
Subsidiary Procedure 1

ls the
(PathNumber
values the

NumberOfPaths)
AND is

(PriorityFound
= False)

1465

No
END 1499

Algorithm 5

1470

For Current
PathNunber is the
ListOfPriorities
PriorityNumber

No

Set PriorityFound = True 1475

1480

s
NoteCount = 1

Perform Subtractive divisi of
Note(Group among paths with com
mon priority equal to PriorityNumber

1490
Play Notegroup 1, on all

channels assigned to PathNumber

Increment the 1495
PathNumber by 1

Fig. 8e

U.S. Patent Jun. 1, 2010

Additive Divisi Overflow - Second Subsidiary Procedure
Initialization

1500
Set NarrowestPitchRange = 128

1505
Set NarrowestPitch.Rangelindex = -1

Set Noteoroupindex = 0 1510
Begin
subsidiary 1515
procedure ls the No s s'

GroupSize o &
value > 1 aS

C s
c Yes

OuterLoopLimit = NumberOfNotes
- GroupSize 1520

Set OuterNoteindex = 1 1525

a
x

Q
1530 S

OuterNoteindex No SS
< OuterLoopLimit

?

Set InnerNoteindex = 1550
OuterNoteindex

Set innerloop Limit = 1555
OuterNoteindex + GroupSize -1

InnerNoteindex
C InnergopLimit

Fig. 9a

Sheet 20 of 24 US 7,728,213 B2

1570 Assigned ToGroup
per InnerNoteindex) = true
or is Assigned to Group
per InnerNoteindex +1)

F true

NO

Yes
1575

set Valid Grouping flag = false
1580

Set PitchSpread value of this Group
= (ListOfNotes at (InnerMotelindex)
-(ListOfNotes at (InnerNoteindex+1)

Set PitchRange value of this Group
= PitchRange + PitchSpread

increment the 1585
InnerNoteindex by 1 1590

1600
No ls

Valid Grouping
flag for this group

F true?

ls the
PitchRange

< NarrowestPitchRange
2

Yes

Set NarrowestPitch Range
= PitchRange 1610

Set NarrowestPitch Rangelindex
= OuterNoteindex 1615

Increment the 1620
OuterNoteindex by 1

U.S. Patent Jun. 1, 2010 Sheet

Additive Divisi Overflow -
Second Subsidiary
Procedure (continued) 'A'

From Test result"No"
GroupSize > 1 test

(per Fig. 9a)

Set Noteindex = 1

NoteAssigned = false

1650

1695
is the

(Noteindex
END s NumberOfNotes) AND
Sub- (NoteAssigned = false)

routine

Yes

For the Current Noteindex, Set
CurrentNote = ListOfNotes

ls
Assigned ToGroup
for Current Noteindex

F false ?

Yes

Increment the
Notegroupindex by 1

For the current Notegroupindex
Notegroup = CurrentNote

set NoteAssigned flag
true

increment the
Noteindex by 1

Fig. 9b

21 of 24 US 7,728,213 B2

B'
From Test Result "NO"
of OuterNoteindex
test (per Fig. 9a)

1700 1705

END
Sub

routine

Yes

1710 Set Noteindex
NarrowestPitch Rangelindex

1715 Set LoopLimit =
NarrowestPitchrangelindex

+ GroupSize

ls the
Noteindex
< LoopLimit

END
Sub

routine

Yes

For the Current Noteindex, Set
Current Note e ListOfNotes

increment the
Notegroupindex by 1

For the current Note Groupindex
Notegroup = CurrentNote

Increment the
Noteindex by 1

1730

1740

1745

U.S. Patent Jun. 1, 2010 Sheet 22 of 24 US 7,728,213 B2

Subtractive Diuisi Step 10. Specify 1800 Initialization
Process - Soft Attacks Construct four new arrays from which
Soft Attacks lists can be derived as follows:

Arrays Lists from Arrays
Notes to be turned Off ListOfNotes Off
Notes to be turned on ListOfNew Nofeson
Notes currently playing listOfNotes Sounding
Soft Attack True/False ListofSoftAffacks

1805 for each sounding note
Begin Process Initialize Noteindex = 1

1810 1820

increment the
Noteindex by 1

Noteindex
values the

NurnberOfNotes
Sounding

No

Yes

For Current Noteindex value, 1815
ListOfSoftAttacks flag = false

Initialize Noteofflindex = 1 1825

1830 ls the
Noteoff index
value < the

NunnberOfNotes
Off

Increment the
Yes Noteindex by 1

For Current NoteCfindex value 1860
set Noteoff = Listofnotes of 1835

Remove SoundingNote
Initialize Noteindex = 1 1840

1855
No Does the

SoundingNote
= NoteOff

1870

1875 from ListOfNotes Sounding
and ListOfSoftAttacks

Increment the
Noteofflindex by 1 ls the

Noteindex
values the

NumberOfNotes
Sounding

(To 1880
see Fig. 10B) Yes

For Current Noteindex value, 1850
SoundingNote = ListOfNofessounding

Fig. 10A

1845
1865

Decrement the Nurnber
OfNotesSounding by 1

U.S. Patent Jun. 1, 2010 Sheet 23 of 24 US 7,728,213 B2

Subtractive Divisi 1880
Process -
Soft Attacks
(continued)

1885 1895

increment the
Noteindex by 1

Noteindex
value < the

NumberOfNotes
Sounding

No

Yes
For current Noteindex value, 1890
ListOfSoftAttacks flag = true

1900
Noteindex= NumberOfNotesSounding

Initialize Noteonindex = 1 1905

ls the
NoteCon Index
value < the

NumberOfNew
Notes On

Yes

increment the 1915
Noteindex by 1

For current Noteonlindex value, 1920
NewNote = ListOfNewNotes On

For current Noteindex value, 1925
ListOfNotesSounding = NewNote

No 1910

For Current Noteindex value, 1930
1940 ListOfSoftAttacks flag = False

tth 1935 Sort ListOfNotes from top to bottom Creene
and place the result in Noteonindex by 1

ListOfNotes

process
Fig. 10B

U.S. Patent Jun. 1, 2010 Sheet 24 of 24 US 7,728,213 B2

1100

1110 -1
Keyboard

1102 Note Allocation Processor

Note Register 1105

1104
Note List Register 1115

CPU

Current Note Register 1120

Notes Left Register 1125

Channel Register 1130

Channel List Register 1135

Current Channel Register 1140

Channels Left Register 1145

Attack Flags 1150

1103
Player

Fig. 11

US 7,728,213 B2
1.

SYSTEMAND METHOD FOR DYNAMIC
NOTE ASSIGNMENT FORMUSICAL

SYNTHESIZERS

RELATED APPLICATIONS

This application is a continuation-in-part of patent appli
cation Ser. No. 10/684,296, filed Oct. 10, 2003, now U.S. Pat.
No. 7,109,406 and published as 2005-0076770A1, and which
is incorporated herein in its entirety.

TECHNICAL FIELD

This invention relates to the playing or orchestration of
musical material on a sample-based or synthesizer-based
instrument in a way that dynamically assigns individual note
reproduction to simulate the manner in which a given number
of live musical instruments would play a musical selection.
The same note assignment methods described here may
equally be applied to the generation of musical scores for
orchestration, or for generating Stored note-playing data for
Subsequent generation of synthesized Sound or orchestration.

BACKGROUND

There are fundamentally two categories of musical synthe
sizers: (a) samplers (or 'sampling synthesizers'), in which
stored digitized recordings (or samples) of actual instruments
are reproduced when notes are played on a keyboard con
nected to the sampler, and (b) synthesizers, in which sounds
are created at the time they are played based on analog or
digital electronic circuitry which creates the sound without
reliance upon previously recorded actual instruments. These
instruments today are predominantly polyphonic, meaning
they can play more than one note at a time. While the nature
of the invention is immediately more applicable to samplers,
it will function in connection with synthesizers as well. For
simplicity the discussion herein will focus primarily on Sam
pling applications.

Current electronic musical instruments are predominantly
sample-players, which means they play specially processed
digital recordings of sounds in response to some sort of con
trol input, typically a musical keyboard or a sequencer. In
simple terms a sequencer is like a digital version of a player
piano giving instructions to the sample player (or other elec
tronic instrument) on which notes to play and how to play
them. For the purpose of the instant invention, it doesn’t
matter whether a “real time' keyboard or other musical con
troller or a sequencer is used to play notes on the synthesizer.
There are synthesizers in which waveforms are generated
and/or manipulated to create Sounds without any reference to
actual recorded Sounds (such as additive waveform synthe
sizers, fm-modulating synthesizers, and wave table lookup
synthesizers, among others); these were the original types of
synthesizers. Later, as digital audio technology developed
and became affordable, Samplers or sampling synthesizers
became popular, for samplers, actual recordings of sounds are
specially processed into files that are stored on digital media
for later playback that emulates the original recorded acoustic
instruments (or other sound sources).

Sampled Sounds are sold in collections, or libraries, and the
individual sounds in sample libraries may be created from
recordings of one or several instruments. With ensemble
instruments such as bands and orchestras, it is common for a
group of similar instruments to be recorded together; this
“multi-instrument Sound is saved as a single sample. Thus, a
prior-art sample of the first violin section of a symphony

10

15

25

30

35

40

45

50

55

60

65

2
orchestra may consist of a recording of sixteen violins play
ing the same note, and these same sixteen violins would then
play another note, and the collection of such notes would be
packaged and identified, for example, as the "XYZ first violin
sample library.”

Depending upon the nature of the technology used in a
prior art sampler, there may be a separate source recording
(initial sample) in its library for each note the sampler is
capable of reproducing, or a single note sample may be elec
tronically interpolated to higher and lower pitches corre
sponding to various notes. The first option yields optimum
Sound quality, at maximum cost and complexity, to create the
library and reproduce it in the sampler, whereas the second
option yields lesser Sound quality at a reduced cost and com
plexity.
When samples are initially recorded, there may be one or

many instruments actually playing the Sound (and each may
be playing one or more notes). Typically with orchestral or
large band Sounds, entire sections of instruments play each
sampled note, with all instruments in a given section concur
rently playing a single note. Thus, in the prior art a sample of
an orchestra section of eight cellos would be a single record
ing of eight cello players playing the same note. When this
sample of one note is played back on a sampler, all eight
instruments are heard playing the same note. Similarly, a
sample of an orchestra section of sixteen violins would be
made by recording sixteen individual violin players all con
currently playing the same note, and when this sample is
played back the sound of all sixteen violins would be heard
playing that note concurrently.
When prior art samples of sixteen violins are played back

in a sampler, if the person playing presses one key on the
keyboard (or otherwise causes one note to be played), the
Sound that comes out of the sampler is the Sound of all sixteen
violins playing that note. So far, this may be very close to
what would be heard in an actual symphony hall where, if the
conductor (or musical score) instructs the first violins to play
that same note, all sixteen will play that note.

However, if the person playing the sampler with this prior
art violin sample presses two notes on the keyboard (or oth
erwise causes two notes to be played), the sound that comes
out of the sampler is the Sound of all sixteen violins playing
each of the two notes; i.e., one hears 32 violins playing; this is
what is called “additive polyphony.” Additive polyphony is
not what would be heard with an actual Symphony because in
that case (with our example) there are only 16 violinists
present, not 32. In fact, when a conductor (or musical score)
instructs Such a first violin section to play two notes, half of
the players (eight of them) will play the one note and the other
half (the remaining eight) will play the second note.

If there are three notes to be played at once, the available
players are split up into three groups, each group playing one
of those notes. With sixteen players and three notes, obvi
ously the division is not equal, so it would typically be done
with one note assigned to 6 players, and each remaining note
assigned to 5 players each. This is what is called “subtractive
polyphony.”
When the number of players available cannot be evenly

distributed among the number of notes being played, a choice
must be made as to where the “extra player or players are
assigned. This choice can be considered to be top weighted if
the extra player(s) play the highest note(s) or bottom
weighted if the extra player(s) play the lowest notes(s). With
live acoustic performers, the allocation decisions affecting
which notes are given to available players is done through a
process known as “divisi” and the instructions for such divisi
are created by any of several parties involved with the music

US 7,728,213 B2
3

creation. Any combination of the composer, a musical
arranger, the conductor and the “first chair player of the
particular section of instruments typically decide who plays
which notes; divisi is not an exact science or protocol in
music, but it is a well-established and essential principle
guiding live performances wherein more than one player of a
particular type of instrument are playing at once.
As noted above, the prior art, when multiple notes are

concurrently played on a sampler, multiple instances of the
sampled recording are sounded. Thus, if one has a cello
sample in the library made from eight cellos, and two notes
are played together on the sampler, the sampler would play
the Sound of sixteen cellos playing, eight instruments per
note. If one plays a triad (i.e., three notes concurrently) on the
sampler, the sampler would play the sound of twenty-four
cellos (i.e., three times the eight cellos per sample). Although
this is what is available in professional studios, it results in an
unrealistic Sound quality which does not reflect how an actual
orchestra would sound. By way of example, with a real
orchestra, the power (or Volume) of a cello section stays
relatively constant whether the cello players play one or sev
eral notes simultaneously (e.g., the power is about the same
whether eight cellists of an eight cello orchestra section all
play the same note or if five are playing one note while three
are playing a different note). With a prior art sampler, the
power is multiplied approximately by the number of notes
played. By way of another example, as more and more notes
are played simultaneously with a sampler, the density of the
harmonics Sounded tends to create an organ-like effect rather
than preserve the clarity and concise Sound definition
afforded by a reasonable and fixed number of instruments
playing at once. (Note that there may be valid reasons to use
additive polyphony, but optimum orchestral Sound is not
obtained using additive polyphony exclusively.)
The method by which prior art samples are implemented

does not include any provision for automatic allocation of
individual notes among a fixed number of players. Most con
ventional sample libraries have multiple players “built in to
a given Sound sample and so the “additive polyphony'
employed in typical samplers cause more instruments to be
heard the more notes that are played at the same time. This
causes the Sound power to multiply with each note played
(three notes played using a sixteen-violin Sample will Sound
like the first violin section has suddenly grown to 48 players).
For this reason, anyone who has tried to attain realistic or even
usable "orchestral balances' using prior art samplers and
sample libraries has had to constantly “ride gain” or adjust the
volume level of the performance to compensate for the power
build up with greater numbers of notes; Such "gain riding
may alternately be done by skilful playing on a Velocity
sensitive keyboard, but this can be an exhausting effort. In a
“real' orchestra or other ensemble, such sound power (vol
ume) build-up does not occur because no matter how many
notes are played, there are only a fixed number of musicians
and instruments on stage performing.
The realism of sampled sound also depends upon correct

conveyance of the harmonic structure. Each instrument as
played by a given musician produces its own unique timbre
(harmonic structure) and these various harmonics together
create the texture of the sound that is heard. With a fixed
number of instruments constantly reallocated to whatever
number of notes are being played (the “live' situation), these
unique timbres are all present, but only one per instrument,
and so the combined harmonic structure has a distinct and
discernable quality to a trained ear. However, when this full
set of instruments also play the next note and the next and so
forth all at one time (the prior art sampler situation), the

10

15

25

30

35

40

45

50

55

60

65

4
harmonic structures of these multiple sets of instruments
playing various notes overlay one another, and the unique
timbres are no longer discernable. The resulting Sound may
be described as "dense.” “organ-like.” or “muddy,” and no
amount of Volume control adjustment can remedy this unre
alistic harmonic structure.
What is needed to improve the realism of sampled or syn

thesized musical performances is a way to allocate the notes
played to individual instruments or to Small groups of instru
ments, changing the allocations in accordance with the num
ber of notes being Sounded at any given time. That is the
nature of the methods presented herein.

SUMMARY

Various embodiments of the invention relate to methods
and systems for assigning notes to be played by a musical
synthesizer to a predetermined number of channels of said
musical synthesizer, so that the musical synthesizer may
emulate the note allocation of a live orchestra section. The
method includes the steps of selecting a note/channel assign
ment table corresponding to the number of notes to be played
and the number of channels allocated to the playing of Such
notes, and assigning notes to the channels pursuant to the
assignment table. The number of channels would typically be
the same as the number of instruments in the orchestra section
being emulated AS new note events occur, notes are dynami
cally reassigned to channels so that hard and soft attacks are
taken into account and, to the extent practicable, each channel
plays a single note at a time.

Various embodiments of the invention also relate to meth
ods and systems for assigning notes to be played by a musical
synthesizer to a predetermined number of voices (where a
“voice' nominally represents one or several instruments) of
the musical synthesizer, so that the musical synthesizer may
emulate the note allocation among musicians of a section
withina live orchestra. The method, which the authors refer to
as “subtractive divisi, includes the steps of pre-assigning
voices (whether single or multiple instruments) to different
channels so they can be addressed discretely (this presup
poses the Voices have been created as individual instruments
or small clusters of them, rather than whole sections of instru
ments as was common in prior art libraries of Sounds), pre
assigning other parameters as well (such as priority, top or
bottom weighting), calculating in real time the assignment of
notes to each of the available Voices, and reassignment of
Voices whenever the specific notes playing change. The num
ber of channels would typically be the same as the number of
instruments (or, for example, Small groups of instruments,
depending on the resolution of the sampled Voices) in the
orchestra section or other ensemble being emulated. Note
events are defined per current industry practice, and the sig
nificant events for this process are note-ons (an added note is
played) and note-offs (a note is no longer played). As new
note events occur, notes are dynamically reassigned to chan
nels so that as a basic function, each channel plays a single
note at a time. Additional provisions of the invention deal
with situations when more notes are played than there are
available voices (which is referred to herein as “overflow),
and how to reallocate a channel (or channels) that had been
Sounding a given note which is Subsequently released while
other notes of a chord continue to Sound.
The various embodiment for subtractive divisi provide

dynamic note allocation and being accomplished by means of
lookup tables or algorithmic methods, for example. Various
embodiments also provide methods for handling overflowed
notes (notes exceeding in quantity the number of voices avail

US 7,728,213 B2
5

able) which method preserves a better orchestral balance. The
basic subtractive divisi functions are embodied in several
exemplary processes herein, including variations for top and
bottom weighting and for note overflow. Also presented
herein are an alternative set of processes for what the authors
refer to as “additive divisi” which in a novel way can perform
real time orchestration among multiple instrument sections.
Additive divisi serves more of an orchestrator function than it
does an orchestral balancing function; however, it is a proce
dure for dividing or assigning notes and it may invoke Sub
tractive divisi in an overflow situation so we retain the term
“divisi’ in this context as well. Additive Divisi provides an
ordering procedure for sequentially joining instruments into a
composition, which order is determined by means of assign
ing “additive priority” values to the available instrument sec
tions (designated by means of additive divisipaths). Additive
Divisi with Overflow provides the means for distributing
notes when the number of notes exceeds the number of addi
tive priority settings one has established for the additive divisi
paths.

BRIEF DESCRIPTIONS OF THE DRAWINGS

FIG. 1 is a schematic drawing of an embodiment of the
present invention.

FIGS. 2a and 2b are a flow diagram showing the Note
Allocation Routine of the present invention.

FIG. 3 is a sample set of assignment tables.
FIG. 4A is a flow chart for a process of the first step in the

method for accomplishing top-weighted Subtractive divisi
when there are no more notes than the number of channels
(i.e., when no note overflow condition exists).

FIG. 4B is a flow chart for a process of the second step in
the method for accomplishing top-weighted Subtractive divisi
when there are no more notes than the number of paths (i.e.,
when no note overflow condition exists).

FIG. 4C is a flow chart for a process of the first step in the
method for accomplishing bottom-weighted Subtractive
divisi when there are no more notes than the number of paths
(i.e., when no note overflow condition exists).

FIG. 4D is a flow chart for a process of the second step in
the method for accomplishing bottom-weighted subtractive
divisi when there are no more notes than the number of paths
(i.e., when no note overflow condition exists).

FIG. 5a is a flow chart for a process of the method for the
first of 5 steps in the main procedure for dealing with top or
bottom-weighted subtractive divisiwhen there are more notes
than the number of paths (i.e., when a note overflow condition
exists).

FIG. 5b is a flow chart for a process of the method for the
second through fourth of 5 steps in the main procedure for
dealing with top or bottom-weighted subtractive divisi when
there are more notes than the number of paths (i.e., when a
note overflow condition exists).

FIG. 5c is a flow chart for a process of the method for the
last of 5 steps in the main procedure for dealing with top or
bottom-weighted subtractive divisiwhen there are more notes
than the number of paths (i.e., when a note overflow condition
exists).

FIG. 6a is a flow chart for a process of a subsidiary proce
dure which is a detailed explanation of the method cited in
FIG. 5b for figuring out which notes comprise the narrowest
pitch range within the note group size being allocated.

FIG. 6b is a flow chart for a process of two further subsid
iary procedures that are branches based on “No” returns from
decision boxes in FIG. 6a.

10

15

25

30

35

40

45

50

55

60

65

6
FIG. 7 is a flow chart for a process of the method for the

main procedure for dealing with additive divisiwhen there are
no more notes than the number of paths (i.e., when no note
overflow condition exists).

FIG. 8a is a flow chart for a process of the first step in the
method for accomplishing additive divisi when there are
more notes than the number of set priorities (i.e., when a note
overflow condition exists) in which the size of each note
group is established.

FIG. 8b is a flow chart for a process of the second step in
which a group array is initialized and the third step in which
the notes are assigned to groups, still within the method for
accomplishing additive divisi when there is note overflow.

FIG. 8c is a flow chart for a process of the remaining
primary procedure of the third step of assigning notes to
groups when a note overflow condition exists.

FIG. 8d is a flow chart for a process of a branch of the third
step in the method for accomplishing additive divisiwith note
overflow wherein groups are sorted by pitch of contained
notes and notes are assigned to paths according to priorities.

FIG. 8e is a flow chart for a process of a subsidiary proce
dure branching from the third step in the method for accom
plishing additive divisi with overflow wherein notes are dis
tributed to a single divisi path with equal playback priority.

FIG. 9a is a flow chart for a process of a subsidiary proce
dure which is a detailed explanation of the method cited in
FIG. 8b for figuring out which notes comprise the narrowest
pitch range within the note group size being allocated.
FIG.9b is a flow chart for a process of two further subsid

iary procedures that are branches based on “No” returns from
decision boxes in FIG. 9a.

FIGS. 10A and 10B is a depiction of how the system of
subtractive divisidetermines whether a note should be played
with a normal attack or a soft attack. This is an expansion of
the brief references to parts of the normal/soft attack method
cited in FIGS. 4A, 4B, 4C, 4D, 5A, and 5C.

FIG.11 is a block diagram illustrating another embodiment
of a note allocation processor according to the invention.

DETAILED DESCRIPTION

The present invention departs from traditional additive
polyphony and is based upon a musical concept known as
“divisi.” Divisi describes the way an actual orchestra would
play a musical selection. If, for instance, an eight cello section
of an orchestra were playing one, two or three notes at the
same time, there could never be more than eight cellos play
ing at once. If only one note were being played, all eight
would typically play that note. If two notes were being
played, then perhaps four cellists would each play one note
and four cellists would each play the other note. In reality,
Sometimes the more melodically important of the two notes
would get preferential weighting; five cellists might play that
note and the remaining three would play the other note. Simi
larly, with a triad (three notes), three cellists might play each
of the two more melodically important notes, while the
remaining two cellists played the third note. This is how divisi
works in a real orchestra, and it is implemented there in part
by the composer and/or conductor, and in part by the lead
player for each section; these people determine which par
ticular instruments sound a given note at any time. There can
never be more notes being created at one time than there are
instruments in that section of the orchestra (unless of course
the instruments themselves are capable of playing more than
one note at a time).
The invention relies upon two things to function when the

system uses a sampler, (a) the original samples must be

US 7,728,213 B2
7

recorded for individual instruments (or sub-sets of the full
section if not individual instruments), and (b) the sampler is
controlled so that the number of instruments being sounded
by the sampler does not exceed a predetermined number,
which number in the preferred embodiment is the number of
uniquely sampled sources of that instrument. (It may be pos
sible to try to play more notes than the number of individual
instruments which were originally sampled by combining
additive polyphony with the present invention so that simul
taneous notes played, in total, exceed the number of uniquely
sampled instruments. In the event that more notes are selected
to be played than the number of individually sampled instru
ments, combining additive polyphony to the present inven
tion would prevent notes from being skipped while still mini
mizing unintended organ-like effects.)
The actual assignment of sampled sounds to notes played is

done using predetermined orchestral process and/or lookup
tables and/or allocation maps (referred to collectively herein
as “assignment tables') which may be devised by someone
with knowledge of instrumentation. The assignment tables
provide instrumentation techniques which would be familiar
to orchestral composers. A primary benefit of the invention in
playing sampled (or synthesized) music is that it creates a
much more realistic sound. The invented system may include
a feature which allows for editing or adding lookup tables by
the end user.

Currently most samplers and synthesizers rely upon a
method of defining their parameters, and transferring control
information, known as MIDI (Musical Instrument Digital
Interface). While the present invention functions with MIDI
systems, it can be implemented on other or future means of
controlling musical instruments (e.g., MLAN from Yamaha
Corporation), and in fact the invention would likely benefit
from faster communications protocols available with MLAN
than is possible with conventional MIDI.

For purposes of explanation, MIDI terminology will be
referred to herein because that terminology is understood by
those skilled in the art. Of course, the terminology is not
necessarily exclusive to the MIDI environment; terms such as
"ports” and “channels' can be applicable with other means of
control. So, for example, in the invention one MIDI port
would be used for a given section of sampled instruments
(i.e., the violins) and each of the sixteen MDI channels con
veyed by that MDI port can request the Sounding of a single
sample (e.g., one instrument. Such as a violin, playing a single
note).
A sampled sound library should be prepared to be suitable

for use with the invention. Typically this will be with one
musical instrumentata time playing each note, and stored this
way in the sampler's library. (One could record two instru
ments at a time and save that recording as a single sample. For
ease of description, we will discuss recording of individual
instruments).
The sampled sound library is loaded into a suitable sam

pler. The means by which that library is utilized by the sam
pler is controlled by the present invention.
An exemplary implementation would have an end user

playing a musical keyboard, which keyboard generates note
commands as it is played. These commands go to a processor
(hardware, firmware and/or software), which does the follow
ing: it analyzes the number of notes being played on the
keyboard at any one moment and then assigns the played
notes to channels of the sampler (or synthesizer), and thus
ultimately to available sampled sounds. Assignment is made
Such that the total number of sampled instruments playing all
the notes does not exceed the original number of individual
instruments (or Sounds) that were sampled. (As noted above,

5

10

15

25

30

35

40

45

50

55

60

65

8
in those rare circumstances when an end user would cause
more notes to be played by one orchestra section than the
number of real instruments which were sampled, then addi
tive polyphony may be used to have the sampler play the
“extra notes. Alternatively, the “extra notes may be ignored
using a predefined priority Scheme favoring, for example, the
most recently played notes or the highest pitched notes.) The
notes are dynamically assigned in response to changes in
which keys are pressed, held down, or released on the key
board (or any other Suitably-interfaced musical performance
controller).
A single set of assignment tables for assignment of avail

able sampled instruments to notes played may not be suitable
for all types of music or for all types of instruments. It is
expected that commercial embodiments of the invention will
include a menu of assignment tables, with default settings
available for various instrument sections. The choices of
algorithms/lookup tables, and provision for user-commanded
changes, would allow for selection of Such options as top
weighting (where more instruments Sound the highest
pitched note) and bottom-weighting (where more instru
ments play the lowest pitched note).

Various embodiments of the subject invention are illus
trated in the attached drawings which are referred to herein.

FIG. 1 illustrates an embodiment of the invention shown in
a contemplated performance system 10. This embodiment
includes a user input device 101, a note allocation processor
102, and a note player 103. In the embodiment described
herein, the input device is a musical instrument keyboard. It
may be another device as well, such as an ASCII keyboard or
a MIDI controller. The note player is a MIDI sampler in the
embodiment described here.

Note player 103 includes a library of recordings of notes
played by individual instruments which, in the example dis
cussed here, are comprised in an orchestra. It should be noted
that the library may include other recorded sounds as well,
Such as Sound effects, Vocals, and non-orchestral instruments.
For simplicity, the description herein is of a sampler loaded
with recordings of individual orchestra instruments.

Note allocation processor 102 includes a central process
ing unit (“CPU”) 104, note counter 105 and a channel com
parison counter 106, and the following memory locations:
notes-on list 107, assignment tables 108, old note/channel list
109, sorted notes-on list 110, new note/channel list 111 and
channel commands buffer 112.

The input device, note allocation processor, MIDI interface
and player work together as described below in connection
with the discussion of the invented process.
The invented process, as it is most likely to be used with

currently available commercial products, will rely upon vari
ous MIDI channels (which may be from one or several ports)
of the player being assigned to different orchestra sections.
The invention assigns notes for a given orchestra section to
channels within a port such that each channel of the player
will play the sample sound of a single instrument playing the
noted assigned to it. It is possible to assign some channels of
a particular MIDI port to one section of an orchestra and other
channels of that port to another section of an orchestra. There
fore, in the discussion which follows, reference will be made
to channels, regardless of ports.
An end user should perform certain setup steps. That is, the

end user must first decide what section of an orchestra the
input device (here a musical keyboard) will represent. Note
that the end user could designate the entire keyboard for a
single orchestra section (for an eight cello orchestra section or
for a sixteen violin orchestra section).

US 7,728,213 B2

Alternatively, the end user could figuratively split the key
board into representations of two orchestra sections (e.g., the
left forty-four keys of an eighty-eight key keyboard could be
for a cello section and the right forty-four keys could be for a
violin section). In such a case, the keyboard would be deemed
to be two separate keyboards, each acting effectively separate
from the other. When multiple keyboards are used, each key
board feeds its signals to a separate note allocation processor
(or note allocation processor module).
The orchestra section which a keyboard represents does not

have to be a traditional orchestra section (which is usually
composed of a plurality of the same instrument). The orches
tra section that the keyboard represents could be defined as
four violins, two cellos and two wind instruments such as
oboes. The orchestra section could also be composed of other
“instruments. Such as a waterfall or a baby crying.

In determining what orchestra section the keyboard is rep
resenting, the end user would also determine how many
instruments are in the section and the end user would then
adjust the controls of the player Such that a single channel of
the player corresponds to each instrument.

The assignment tables loaded into the assignment tables
memory location would be selected to take into account the
particular composition of the section represented by the key
board and the assignment of the player's channels.

In this regard, the user would assure that the appropriate
assignment tables are loaded into the assignment tables
memory location. Such assignment tables may be among a
large variety of assignment tables resident in a master file
located in another memory location in the note allocation
processor or in an associated computer and selected there
from by the end user for loading into the assignment tables
memory location, or the assignment tables may be specially
written by the end user and loaded into the assignment tables
memory location.
The end user would also assure that appropriate samples

are located in the player's sample library (if it is a sampler) or
that the player has the capability to produce the desired
Sounds (if the player is a synthesizer).
The term “note' traditionally means a tone of a particular

frequency. (For example, the frequency of the note A above
middle C on a piano is 440-443 Hz, depending upon what
standard or scale is used.) For purposes of this disclosure, the
term “note' includes any sound which may be produced (e.g.,
a waterfall or baby crying) as well as Sounds made by tradi
tional orchestra instruments.

The dynamic note allocation process 20 is illustrated in
FIGS. 2a and 2b. A signal from keyboard 101, indicating a
new event (i.e., a change in what the end user desires to be
played) is received by the CPU 104 of note allocation proces
sor 102 in step 201. (User input devices may also provide
other instructions besides which notes should be played. For
purposes of the discussion herein, these other instructions are
deemed to be passed through the note allocation processor.)
Even if the end user's hand comes down on, or off of multiple
keys, the actual communication from the keyboard of changes
in the notes being played is serial (one after another, albeit in
possibly very rapid and randomly-ordered sequence). After
receiving the new event signal, the CPU then performs step
202, wherein the CPU determines whether or not the event
contains a note-on instruction (e.g., the result of the end user's
pressing down of a key on the keyboard). If the answer is
“yes” (i.e., it is a note-on instruction), then the CPU performs
step 203, which is incrementing the note counter 105 by one.
(When the note allocation processing is first begun, the note
counter is set to zero.) Then the CPU performs step 204 in
which it adds the note which is being turned on to the notes-on

10

15

25

30

35

40

45

50

55

60

65

10
list in notes-on list memory location 107. If the answer to the
query of step 202 is 'no' (i.e., in which case the event must be
the cessation of the playing of a note and the incoming signal
is interpreted as a note-off instruction), the CPU performs
step 205 in which it decrements the counter by one. The CPU
then performs step 206 in which it removes the note which is
being turned off from the notes-on list in memory location
107.

If as a result of a note-off instruction, there are no notes to
be played, there is no longer any need for note allocation. In
this regard, the CPU performs step 207 in which it determines
whether the note counter has a value greater than Zero. The
counter represents the number of notes being played at any
one time (or the number of notes listed in the notes-on list). If
the answer is “no, then the CPU performs step 208, in which
the CPU causes the note allocation processor to send either (i)
an all notes off command to the player with respect to all
channels corresponding to the keyboard or (ii) individual
note-off commands to the player fore each channel currently
sounding a note. In addition, in step 208 the CPU sets the
channel comparison counter to one and sets the contents of
the old note/channel list memory location to null. In an alter
native embodiment, step 207 could be a determination of
whether there is at least one note on the notes-on list. Again,
if the answer is “no,” the CPU performs step 208. The all
notes-off command also assures that no unintended notes are
sounded by the player 103.

If the answer to the query of step 207 is “yes” or if the
answer to the query of step 202 is “yes” and step 204 has been
performed, the CPU performs step 209.
As noted above, the issuance of the all notes off command

(or the individual note-off commands) in step 208 is a fail safe
feature. This feature may be deemed to be unnecessary. In
which case, steps 207 and 208 would be eliminated and the
process would proceed to step 209 from step 204 or step 206.

In step 209 the CPU sorts all notes currently being played
(i.e. the notes on the notes-on list in notes-on list memory
location 107) according to their pitch and stores the sorted
notes list in sorted notes list memory location 110. The sort
ing may instead be done concurrently with the addition or
removal of a note from the notes-on list in steps 204 and 206,
respectively, and the notes-on list in memory location 107
then serves as the sorted note list.

For the sake of simplicity in this explanation, the input
device is considered to be playing only up to as many notes as
there are channels (and, correspondingly, instruments) for the
section of the orchestra represented by the keyboard. The
invention could be configured to accommodate the playing of
additional notes by, after step 209, determining how many
notes are on the Sorted notes-on list and, to the extent that the
number of notes exceeds the number of channels that corre
spond to the keyboard, that number of the lowest notes (in a
top weighted system) are removed from the Sorted notes-on
list and read into the sorted notes-on list of a Supplemental
note allocation processor which addresses the same channels
of the player so that they play multiple notes polyphonically,
and skipping of notes is avoided. The Supplemental note
allocation processor then would assign only one channel to
each note, with the lowest pitch note assigned to highest
numbered channel and so forth (i.e., in an eight channel setup,
the lowest pitched note would be assigned to the eighth chan
nel and the next lowest pitched note would be assigned to the
seventh channel). Alternatively, the invention may work So as
to skip the “additional or “extra notes pursuant to a priority
scheme, as noted above.

After step 209 the CPU then performs step 210. In that step
the CPU consults the assignment tables in assignment tables

US 7,728,213 B2
11

memory location 108 for the appropriate note allocation
assignments for the number of notes to be played. Then the
CPU performs step 211, wherein the CPU, pursuant to the
note allocation assignments received in step 210, prepares a
new note/channel list which it stores in new note/channel list
memory location 111. Pursuant to this list, a channel is cor
related to a note inaccordance with the note allocation assign
ments. As discussed further below, each channel of the player
corresponding to the keyboard receives either (i) no com
mand to play a sample or (ii) a command to play a sample of
a particular note.
By way of example, when a note is removed from a previ

ously played group of notes (i.e., the end user's finger is
released from a group of notes which had been held by the end
user), channels which previously were assigned to the
released note are reassigned to the notes still being played.
For playing an eight cello section, assignment tables for eight
cellos, such as assignment tables 301-308 shown in FIG. 3,
would have been loaded into assignment tables memory loca
tion 108. If three notes had been played and these had been
Sounded by eight instruments (e.g., eight separate samples of
one cello each), the note allocation processor, with a top
weighted assignment table for three notes (e.g., table 303),
would have assigned three channels to the highest note, three
channels to the middle note and two channels to the lowest
note. If the highest note is released by the end user, then the
channels which had been assigned to that note must be reas
signed to the remaining two notes in order to preserve the
orchestral balance. The steps described up to now accomplish
this.

In this regard, if the system shown in FIG. 1 were being
used for allocating notes among the cellos of an eight cello
orchestra section, and if at a particular time three notes were
being played, namely C, E and G, with G having the highest
pitch and C the lowest, the old note/channel list in memory
location 109 would have three channels (e.g. first, second a
third cello channels) each assigned note G, three channels
(e.g., fourth, fifth and sixth cello channels) each assigned note
E. and two channels (e.g. Seventh and eighth cello channels)
each assigned note C. If the new event is the end user lifting
his finger from the G key, the keyboard sends a G note-off
signal to the note allocation processor, which receives the new
event signal in step 201. In step 202 the CPU determines that
this new event is not a note-on signal and proceeds to step 205.
The CPU decrements the note counter from three to two. In
step 206 the CPU removes G from the notes-on list in memory
location 107. The CPU then performs step 207 in which it
determines that the value in the counter is in fact greater than
Zero, and moves to step 209.

In step 209 the CPU sorts the notes in the notes-on list by
pitch into a sorted notes-on list. The CPU stores the sorted
notes-on list of two notes, E and C (sorted from highest to
lowest pitch) in memory location 110.
The CPU next performs step 210. In performing this step,

the CPU (i) interrogates either the counter or the notes-on list
or the sorted notes-on list to determine how many notes are
being played concurrently, and (ii) selects the assignment
table which corresponds to that number of notes. Here assign
ment table 302, for two notes in a cello section, is selected.
Then the CPU performs step 211. For the example dis

cussed here, the predetermined assignment table 302, for two
notes played by an eight cello orchestra section provides for
four channels playing the higher note and four channels play
ing the lower note. So, pursuant to this allocation, the CPU in
Step 211 consults the sorted notes-on list in memory location
110 and assigns the first through fourth cello channels to play
the higher note (here note E), and the fifth through eighth cello

10

15

25

30

35

40

45

50

55

60

65

12
channels to play the lower note (here note C). In this step the
CPU also creates a new note/channel list which reflects these
new channel assignments and stores the new note/channel list
in new note/channel list memory location 111.

If the player were of an idealized embodiment, the CPU
would now perform a step of causing the note allocation
processor to send a set of commands corresponding to each of
the note allocations set forth on the new note/channel list to
the input of player 103, and player 103 would respond by
having each of its respective channels which correspond to
the keyboard play the prerecorded sample corresponding to
the note assigned to that channel.

However, currently available players are configured so that
their respective channels continue playing notes which they
have been commanded to play until a note-off signal is
received. That is, current players are polyphonic and, for
example, once a particular channel has been commanded to
play a cello Sounding note C, that channel would continue
playing the sample of the cello Sounding note C even after that
channel receives a command to play a cello Sounding note E.
Such channel would be playing two notes (i.e., playing two
samples, one of a cello Sounding note C and the other of a
cello Sounding note E) after receiving the second signal. The
present invention takes the configuration of current players
into account.

Here a brief explanation of musical terms “hard attack” and
“soft attack’ would be helpful. The concept of a hard attack or
a soft attack is not new in electronic music. The method in
which Such attacks are invoked as a response to continuing or
reassigned notes, as described herein, is new.

In general, a Sound (a sampled note in this case) which
begins abruptly or with a steep increase in amplitude (i.e., a
Sudden onset of Sound) is said to have a hard-attack.
Examples would be such sounds as the plucked beginning of
a guitar note, or the hammered-down beginning of a piano
note. A Sound which commences with a gradual increase in
amplitude is said to have a soft attack. Examples would be
Such sounds as a gently applied bow to a violin string or a
softly blown flute note. Hard attack and soft attack are terms
familiar to the music business. Many traditional samplers
(and synthesizers) allow for control of the attack characteris
tic, by means of shaping the amplitude envelope of the onset
of any given Sound. It is also possible to assign control param
eters that select attack characteristics.

In the case of the note allocation process described herein,
the concern is not with the hard or soft attack nature of the
sampled Sound. The concern is this: does a given new event
comprise a newly-played note (i.e., a note which is not being
played on any of the channels of the player (and is therefore
not listed in the old note/channel list). If it is, then the player
should be commanded to play that newly-played note on the
channels assigned that note as a hard attack Sound.

However, if the new event comprises the cessation of the
playing of a particular note while other note(s) are still being
held, then the assignment of notes to channels would essen
tially be a re-assignment of the released channels to held
notes, and a hard attack would be inappropriate. Similarly,
even when the new event comprises the addition of a newly
played note to one or more other notes which continue to be
Sounded (i.e., held), there is likely to be a reassignment of the
held notes among the channels. With respect to a channel
playing a held note (regardless of whether that channel was
that channel which had been playing the note before the new
event), a soft attack is required so that the held note does not
Sound as if it were a freshly-played note. That is, reassigned
notes should not sound like new notes being played; they must
Smoothly appear without drawing attention to themselves.

US 7,728,213 B2
13

So after step 211 the CPU performs the compare new
note/channel list with old note/channel list subroutine 212, in
which the CPU compares the new note/channel list in
memory location 111 to the old note/channel list that is stored
in memory location 109, on a channel-by-channel basis.

For each channel, one of four possibilities exists:
(i) it is going to continue playing the same note which it is

currently playing (i.e., the channel will be playing the
same note that it was playing before the new event), in
which case the CPU causes no signal to be sent to the
player with respect to that channel because, as men
tioned above, current players have each of their channels
continue to play whatever sample they are playing until
a note-off command is received by the player,

(ii) it is going to play a note which is not currently being
played by any channel on the note/channel list (i.e., the
note is not listed on the old note/channel list), in which
event the CPU causes two commands to be sent to the
player with respect to that channel, first a note-off com
mand with respect to the note currently being played by
that channel and second a note-on command with
respect to the new note for that channel, which note-on
command is accompanied by a hard-attack instruction;

(iii) it is going to play a note that is new to that channel but
was being played by at least one other channel before the
new event under discussion (i.e., the note is listed on the
old note/channel list), in which case the CPU causes two
commands to be sent to the player with respect to that
channel, first a note-off command with respect to the
note currently being played and second a note-on com
mand with respect to the new note for that channel,
which note-on command is accompanied by a soft-at
tack instruction;

(iv) no note is to be played by the channel, in which case the
CPU causes a note-off command to be sent to the player
with respect to that channel.

So, in subroutine 212, the CPU performs step 213 with
respect to each channel. In this step the CPU queries whether
the channel is to be playing the same note as it was playing
before the new event. If the answer is “yes” then no signal is
sent to that channel. If the answer is “no, then the CPU
performs step 214 in which the new note/channel list is que
ried to see if any note is to be played by that channel.

If the answer is “no then step 215 is performed, in which
the CPU sends a note-off command to the channel commands
buffer in memory location 112 with respect to the note which
is currently being played by that channel.

If the answer to the query in step 214 is “yes” then step 216
tests to see if the new note on that channel is the same as any
notes on the old note/channel list. If the answer is “no step
217 is performed in which the CPU sends to the channel
commands buffer in memory location 112, with respect to
that channel, a note-off command with respect to the note that
is currently being played on the channel (as listed on the old
note/channel list) and a new note-on command, which note
on command includes the identity of the note on the new
note/channel list corresponding to the channel being com
pared, along with a hard attack instruction.

If the answer to the query of step 216 is “yes” step 218 is
performed in which in the CPU sends to the channel com
mands buffer with respect to that channel a note-off command
with respect to the note that is currently being played on the
channel (as listed on the old note/channel list) and a new
note-on command, which note-on command includes the
identity of the note on the new note/channel list correspond
ing to the channel being compared, along with a soft attack
instruction.

10

15

25

30

35

40

45

50

55

60

65

14
Alternatively, step 216 could instead test to see if the

answer to the query of step 202 is “yes” (or if the new event is
a note-on signal). If, with respect to this alternate version of
step 216, the answer is “yes” then step 217 is performed as
described above, and if the answer is “no, then step 218 is
performed as described above.

After each of steps 213, 215, 217 and 218, the CPU per
forms step 219 in which the CPU determines whether the
value of the channel comparison counter is equal to the num
ber of channels on the new note/channel list. (The number of
channels on the new note/channel list is the same as the
number of instruments in the orchestra section which is being
played.) If the answer to the query of step 219 is “no, this
means that the comparison of the new note/channel list with
the old note/channel list has not been completed with respect
to every channel. In which case, the CPU performs step 220 in
which the channel comparison counter is incremented by one.
Then the CPU returns to step 213 and repeats the portion of
the process beginning with that step until the comparison is
completed with respect to all of the channels.

If the answer to the query of step 219 is “yes” this means
that the comparison of the new note/channel list with the old
note/channel list has been completed with respect to every
channel. In which case, the CPU performs step 221 in which
the CPU (i) causes the note allocation processor to send the
commands in the channel commands buffer to the players
input, (ii) writes the new note channel list into the old note/
channel list memory location 109 (i.e., the new note/channel
list becomes the old note/channel list for the next event), and
(iii) sets the channel comparison counter to one.
The setting of the channel comparison counterto one could

instead be done as part of step 201 or step 211 any other time
prior to entering the compare new note/channel list with old
note/channel list Subroutine.

In addition, the contents of the channel commands buffer
should be erased as part of step 201 or step 211 any other time
prior to entering the compare new note/channel list with old
note/channel list Subroutine.

The system and process described above provides a test for
each channel to see if it is playing a held note (i.e., any note
appearing on the old note/channel list) and if so, the corre
sponding channel in the player is commanded to play the note
with a soft attack. (If the channel were already playing the
same note, then no command need be sent to the player with
respect to that channel and that channel would continue to
play the same note.) If it is not a held note, then it is a
newly-played note, and, as noted above, step 217 provides
that the note-on command for that note will include a hard
attack instruction. (It has earlier been mentioned that with
respect to the playing of a new note, the keyboard may have
included additional instructions which are passed through the
note allocation processor. Such instructions may override the
hard attack instruction provided by step 217.)

Returning now to the discussion of the example of assign
ing notes to the channels of a system emulating an eight cello
orchestra section (in which the CPU performed step 211 by
assigning note E to the first through fourth cello channels, and
note C to the fifth through eighth cello channels and creating
a new note/channel list reflecting these channel assignments
and storing the new note/channel list in new note/channel list
memory location 113), the CPU next performs step 212. This
is the Compare New Note/Channel List with Old Note Chan
nel List Subroutine described above.

The old note/channel list (in memory location 109) and
new note channel list (in memory location 111) areas follows:

US 7,728,213 B2
15

Old Note? Channel List New Note? Channel List

Channel No. 1: G Channel No. 1: E
Channel No. 2: G Channel No. 2: E
Channel No. 3: G Channel No. 3: E
Channel No. 4: E Channel No. 4: E
Channel No. 5: E Channel No. 5: C
Channel No. 6: E Channel No. 6: C
Channel No. 7: C Channel No. 7: C
Channel No. 8: C Channel No. 8: C

In performing the Compare New Note/Channel List with
Old Note Channel List Subroutine, the CPU performs step
213 in which the CPU checks the value of the channel com
parison counter and compares the note on the new note?
channel list for the channel corresponding to that value with
the note on the old note/channel list for same. Since this is the
first time that step 213 is being performed since the new event,
the value of that counter is one. So, the CPU compares the
channel 1 assignments of the old and new note/channel lists.
Here the answer to the query of step 213 is “no' (i.e., the notes
for channel 1 are not the same for both lists). The CPU then
performs step 214 to assure that channel no. 1 does have a
note assigned to it pursuant to the new note/channel list. The
answer to this query is “yes” and the CPU performs step 216
in which it determines whether the note assigned to channel
no. 1 on the new note/channel list is the same as any note on
the old note/channel list. The answer to this query is “yes”
because, even though note E is “new” to channel no. 1, note E
was assigned to at least one channel pursuant to the old
note/channel list. The CPU then, pursuant to step 218, sends
to the channel commands buffer in memory location 114 with
respect to channel 1 a note-off command (i.e., that note G
should not be played) and a note-on command (i.e., com
manding that channel 1 play note E), which note-on com
mand is accompanied by a soft attack instruction. The CPU
then performs step 219, in which the answer to the query of
that step is “no because the number of channels on the new
note channel list is eight while the value of the channel com
parison counter is only one. The CPU then performs step 220
in which it increments the channel comparison counter by one
(i.e., to a value of two).

So, the CPU returns to step 213 in which it performs as
described in the paragraph above, this time with respect to
channel no. 2. Since channel no. 2 on the new note/channel
list is compared to channel no. 2 of the old note/channel list,
the results for channel no. 2 are the same as for channel no. 1,
except this time when the channel comparison counter is
incremented by one in step 219, its value becomes three.
The CPU returns to step 213 in which it performs as

described in the paragraph above, this time with respect to
channel no. 3. The result is the same as with channels nos. 1
and 2, except this time when the channel comparison counter
is incremented by one in step 220, its value becomes four.
The CPU returns to step 213, this time to check if the note

assigned to channel no. 4 on the new note/channel list is the
same as the note assigned to channel no. 4 on the old note?
channel list. Now the answer is “yes” (note E is the note
assigned to channel no. 4 on both note/channel lists). There
fore, the CPU proceeds directly to step 219 (i.e., no command
with respect to channel no. 4 need be sent to the channel
commands buffer). The answer to the query of step 219 is
'no' because the number of channels on the new note channel
list is eight while the value of the channel comparison counter

10

15

25

30

35

40

45

50

55

60

65

16
is four. The CPU then performs step 220 in which it incre
ments the channel comparison counter by one (i.e., to a value
of five).

Again the CPU returns to step 213, this time to check if the
note assigned to channel no. 5 on the new note/channel list is
the same as the note assigned to channel no. 5 on the old
note/channel list. The answer is “no.” and the CPU performs
as described above for channels nos. 1, 2 and 3, except that,
pursuant to step 218, the CPU sends note-off command for the
note E and a note-on command for playing note C, and,
pursuant to step 220, the channel comparison counteris incre
mented from five to six.

The CPU returns to step 213 in which it performs as
described in the paragraph above, this time with respect to
channel no. 6. The result is the same as with channel no. 5,
except this time when the channel comparison counter is
incremented by one in step 220, its value becomes seven.
Once again the CPU returns to step 213, this time to check

if the note assigned to channel no. 7 on the new note/channel
list is the same as the note assigned to channel no. 7 on the old
note/channel list. Because the answer is “yes” the CPU per
forms as described above in connection with channel no. 4.
except that when the CPU performs step 220, it increments
the channel comparison counter to eight.
The CPU returns to step 213, this time to check if the note

assigned to channel no. 8 on the new note/channel list is the
same as the note assigned to channel no. 8 on the old note?
channel list. Because the answer is “yes” the CPU performs
as described above in connection with channels nos. 4 and 7.
except that when the CPU performs step 219, the answer to
the query is “yes” (i.e., both (i) the number of channels on the
new note channel list and (ii) the value of the channel com
parison counter are eight). Instead of performing step 220
after step 219, the CPU performs step 221 in which it (i)
causes the note allocation processor to send channel com
mands from the channel commands buffer to the player
(namely, for channel 1, a G note-off command and an E
note-on command with soft attackinstruction; for channel no.
2, a G note-off command and an Enote-on command with soft
attack instruction; for channel no. 3, a G note-off command
and an E note-on command with Soft attack instruction; for
channel no. 4, no command (i.e., the player's channel no. 4
will keep playing whatever note it is already playing); for
channel no. 5, an E note-off command and an C note-on
command with soft attack instruction; for channel no. 6, an E
note-off command and an C note-on command with soft
attack instruction; for channel no. 7, no command; and for
channel no. 8, no command); (ii) writes the new note/channel
list into old note/channel list memory location 109 (and eras
ing what was there before), and (iii) sets the channel com
parison counter to one.
At this point the note allocation processor has completed

the note allocation process for the event and is ready to
process the next event which comes along.

In a contemplated embodiment, the player would be a
sampler with each channel of the sampler having a specific
library associated with it. For example, for the playing of an
eight cello orchestra section, the library for channel no. 1
would include recordings of a first chair cellist playing a set of
notes; the library for channel no. 2 would include recordings
of a second chair cellist, and so on. With such special libraries,
a real orchestra could be even more closely emulated. In this
regard, assignment tables could have additional impact, with
the most important notes being played by the recordings of
the most skilled musicians.

US 7,728,213 B2
17

The note allocation processor and player, or the input
device, note allocation processor and player, may be manu
factured as an integrated whole product. The description set
forth above would still apply.
The note allocation processor may be used in connection

with live performances or in connection with recording music
in studio sessions. In addition, each set of commands which
are sent to the channel commands buffer may be recorded
automatically and reproduced as music charts or musical
scores for orchestration, or for generating stored note-playing
data for Subsequent generation of synthesized Sound or
orchestration.

As noted above, various embodiments of the invention may
utilize an various processes to perform various functions and
features of the invention. The processes may be implemented
using software, hardware, or a combination thereof which can
be operated in a general purpose or a specifically tailored
computer. The process may also be incorporated into a musi
cal instrument, Such as a digital sampler, a synthesizer, etc.
One example is the use of a divisi process in a computer or a
musical composing instrument. The core divisi process is
Subtractive Divisi, in which multiple instruments (or multiple
clusters of instruments) are divided to play, respectively, two
or more notes that are sounding at once. We generally use the
terms “path' or “divisi path herein rather than “instrument
because it is less restrictive; any sound, whether made by or
emulating a musical instrument or some other source can be
assigned to a "path, and a given path may represent a single
instrument or multiple instruments. So a “path’ is a way to
address a stored sound, and typically it’s synonymous with a
MIDI channel, though any functional addressing scheme can
be used in conjunction with a path. Because the exemplary
processs are devised to workina MIDI environment and were
so tested, we sometime use the term “channel” rather than
“path’ and in this context"channel” refers to a MIDI channel.
When only a single note is sounding, technically there is no

divisi occurring because all instruments are playing that one
note, although this situation is nonetheless accommodated by
the methods presented herein so that there is a unified way to
handle any number of notes being Sounded. Top Weighting
and Bottom Weighting are choices one sets for a given
instance of divisi, wherein a non-evenly divided set of instru
ments (paths) are addressed to yield more sound power (more
paths) on the higher notes (top weighted) or on the lower
notes (bottom weighted). Typically Bottom Weighting is used
on lower pitched instruments such as celli or tubas, whereas
Top Weighting is used on higher pitched instruments such as
violins or trumpets.
The authors have used the C++ computer language to

implement the various divisi processes discussed herein, but
any suitable computer language, or indeed even analog
devices or dedicated digital circuits could be used to imple
ment the essence of the methods described. There are varying
degrees of abstraction in Such an implementation, and for this
reason we present flow charts that explain the basic steps
involved; these should not be considered to be restrictive or
definitive but they should give a technician or programmer
skilled in the art enough information to create a functioning
implementation of the divisi methods described.

Different procedures are required in order to allocate chan
nels to notes wheneverthere are more notes being played than
the number of paths available to play them (i.e., where there
is “overflow” or “note overflow'); these procedures are

5

10

15

25

30

35

40

45

50

55

60

described after the basic procedures wherein the number of 65
notes being played is equal to or less than the number of paths
available to play them (i.e., where there is no overflow).

18
FIG. 4A is the first of two illustrations of how Top

Weighted Divisi may be implemented using software, hard
ware, or a combination thereof. In 400 through 410 an
optional soft attack flag is set, and some values are initialized
to establish the number of available channels (paths) and their
priority. This first process begins in 415 as the system accepts
an input from Some source of notes, and identifies the number
of notes present. A looping index is initialized to a value of 1
(starting point, first note) in 420. Step 1 of this process com
putes the number of channels (paths) to be allocated to each
note, beginning at 425 where the notes to be played are listed
according to their MIDI values, which automatically sorts
them from highest pitch (high MIDI number) to lowest pitch
(low MIDI number). Test 430 checks to see if all the notes
have yet been processed, and a “yes” result indicates there are
still more notes to process. So in 435, 440, 445 and 450 a
value is derived for how many channels will be allocated to
the present note, looking at how many channels have yet to be
allocated and how many notes have yet to be processed. The
counters and indexes are updated in 455 and 460, and again a
test is made at 430 to see if any notes remain to be processed.
If not a 'no' is returned and the process moves on to Step 2.

In Step 1 the number of channels per note were determined,
but not the specific channels or specific notes to be associated
with one another. In FIG. 4B, Step 2 depicts the means by
which the available channels are now specifically allocated to
specific notes in the list of notes to be played. Initializing a
note index to 1 at 465, and beginning with channel 1 at 470, a
test is made in 475 to see if there are any more notes to which
channels must be assigned. If there are (yes) then the current
note is fetched from the list of notes in 480 and a test is made
to determine if the note has yet been played by all channels
which are supposed to play it per 485. If its not (yes) there is
a test to determine whether the note to be played should have
a soft attack 487, and if the soft attack flag is set true then the
current channel plays that note with a soft attack instruction
489. If test 487 shows a soft attack flag is not set, then the
current channel plays that note with a normal attack instruc
tion (490), the channel index is incremented (495), and the
test of 485 is repeated. This process continues until the num
ber of channels that are Supposed to play the note have played
it, at which point 485 returns a No, the note index increments
in 497, and again test 475 is performed to see if any notes
remain to be so processed (i.e., to see if any notes have yet to
be played by remaining channels). If there are not more notes,
475 returns a No and the process is completed per 499. At this
point, divisi has been applied to all notes such that all chan
nels have been assigned and played.

FIG. 4C is the first of two illustrations of how Bottom
Weighted Divisi may be implemented. It is somewhat similar
to FIG. 4A for Top Weighted Divisi. The first difference
occurs right after test 4330 (similar to test 430 in FIG. 4A)
where the function 435 from FIG. 4A is gone and instead we
gain the functions 4335 and 4340 of FIG.4C in which an array
index is set and a channel list is made which essentially builds
in reverse order compared to the additive divisiprocess. Other
than that, the calculation of channels per note in 4335 through
4355 of FIG.4C is pretty much like than in 435 through 450
of FIG. 4A.

In Step 1 of FIG. 4C the number of channels per note were
determined, but not the specific channels or specific notes to
be associated with one another. So this process now occurs in
Step 2, as shown in FIG. 4D, which is essentially identical to
the process of FIG. 4B, Step 2. The only difference is that
because the list of channels per note was built "upside down”
in FIG.4C relative to FIG. 4A such that the greater number of
paths is assigned to lower MIDI number (lower pitch) notes,

US 7,728,213 B2
19

the actual channel to note allocation winds up as a bottom
weighted allocation, assuming there is a non-even division of
channels to notes. It should be appreciated that when the
number of channels is evenly divisible by the number of
notes, there is no difference in the result whether using the top
or bottom weighted divisi method.

Overflow situations can occur in subtractive or additive
divisi, but they require somewhat different processing in each
case. Subtractive divisioverflow is handled by Process 3; this
is what must occur when there are more notes than there are
available paths (or channels) to play those notes. The same
overflow procedure handles top or bottom weighted subtrac
tive divisi, and this procedure is more complex than the non
overflow procedures; it is revealed in FIGS.5a, 5b, 5c., 6a and
6b. Since the number of notes exceeds the number of chan
nels, there must be at least one channel (path) that will play
more than a single note. Process 3 allows for each channel to
potentially receive a 'group' of notes, although that group
may consist of only one note. Still, the process must assign a
group of notes to each channel.

Referring to FIG.5a, lists and variables are initialized and
organized in 500 through 505, incoming notes detected,
counted and listed in 510 and 515, and a list of notes left with
a channel index set up in 520 and 525 as the process begins.
The first thing to do in Step 1 is to compute the size of each
note group—not necessarily which notes are in the group, just
how many groups there are and how many notes are in each
group. This computation occurs in 530 through 560. There are
as many groups as there are channels, and so by examining the
number of notes and iterating a process of division and group
sizing, we come up with how many notes must be in each of
the groups. Since a note cannot be "split' it must be played
by one or another channel step 550 rounds up in the event
the division of 545 creates a non-integer result. As soon as all
the notes have been accounted for (not actually allocated, but
used to calculate note group sizes), 530 returns a No and the
procedure moves on to Step 2.

In FIG.5a, Step 1 the number of groups and the number of
notes per group (i.e., per available channel) were determined,
but not the specific channels or specific notes to be associated
with on another. Steps 2 through 4 in FIG. 5b organize the
association of specific notes to groups by building what is
essentially a two-dimensional array that contains a set of
distinct note lists, one list per each channel. Step 2, 565
through 580, simply initializes the flags in the array so that all
notes are shown as not yet being assigned to any note group.
Once that’s done, 570 returns a No and the procedure moves
to Step 3 where the individual note groups are actually created
(i.e., where the previously determined size groups are now
populated by allocating specific notes to specific channels). In
585 the index is initialized to begin with the first group and
test 590 checks to see if there are any more groups to be
populated with notes. If the test returns a Yes then it finds the
size (number of notes) of the current group being populated in
600, and in 605 it we parses the entire list of notes yet to be
played (i.e., those not yet flagged as having been assigned to
a group) to see which contiguous set of notes that number the
same as the group size span the Smallest (narrowest) range of
pitches. One method for performing this step by calling up an
entire subsidiary procedure, is revealed in detail in FIGS. 6a
and 6b. According to this example, when one instrument (or
one cluster of instruments) is going to play multiple notes,
those notes should be close together in pitch. So for example
if there are 8 notes being played, but only 3 paths (channels)
then two channels will have to play 3 notes each, and one will
have to play 2 notes; the “find narrowest grouping procedure
then looks to see which set of 3 contiguous notes is narrowest

5

10

15

25

30

35

40

45

50

55

60

65

20
in pitch if the process is working on one of the 3-note groups,
and it assigns them to the group of 3 notes being "populated.”
This process is explained in more details below with refer
ence to FIGS. 6a and 6b. In 610 the note group is “attached to
or associated with the narrowest contiguous collection of
notes from 605, an index is reset in 615, and then in 620
through 635 the notes that were just attached to a group are
flagged as having been assigned so those notes are not con
sidered in subsequent parses of “narrowest notes' for subse
quent groups to be populated. In 625 a test is made to see if all
the notes in the current group have been flagged, and if they
have, then a group index is incremented in 645 and the pro
cedure cycles back to test 590 to see if any further groups
remain to be populated with notes. If No returns, the process
moves on to Step 4 at 650.

Step 4 is a simple sorting of the list of the groups from top
(highest pitched note(s)) to bottom (lowest pitched note(s)).
Once this has been accomplished, the groups are ready to be
played in the next step. FIG. 5c shows Step 5, the playing of
the notes for each group (i.e., notes played by each instrument
or collection of instruments addressed on a single divisipath).
After initializing the channel counter in 660 to begin with the
first channel, test 665 checks to see if there are any channels
yet to be played. Of course there are in the first test so with a
Yes returned, the information for playing the first set of notes
(i.e., the first group to be played) is assembled in 670 through
680. Test 685 checks to determine if any of these notes has yet
to be played, which of course returns a Yes the first time
through and in 690 an index points to the current note which
is played in either 695 or 697, that is the note is played with a
normal or a soft attack, as directed by test 692 which checks
the status of the soft attack flag. The note index increments in
700, the process cycles back to test 685 and if there are more
notes to be played, the process continues to increment
through them and play them in 690 through 700. When test
685 indicates all the notes in the group have been played,
returning a No, then the channel number is incremented in
705 (indicating we’re going onto the next group), and test 665
checks to see if any more channels have yet to be played if so,
the whole cycle of Step 5 continues, and if a No returns then
the main procedure for this process is ended in 710. In other
words, all notes in all groups have been played.

FIG. 6a is the first of two diagrams showing the subsidiary
procedure for actually figuring out which of the available
notes comprise the narrowest grouping when two or more
notes are to be played by the same channel in a subtractive
divisiwith overflow, as alluded to very briefly in 605 of FIG.
5b. Here we first initialize the variable NarrowestPitchRange
in 800 to be an arbitrarily high value (the widest range pos
sible in the context of 128 possible MIDI note values), and we
initialize the NarrowestPitchRangeIndex 805 to minus 1 so it
points to nothing, and the NoteCroupSize 810 is initialized to
Zero. We then begin the procedure to figure out which notes
comprise the narrowest set of notes for the current group. Test
815 checks to see whether the group is comprised of at least
two notes; if not, then “narrowest doesn't really mean much
since there is only one note, and the procedure jumps to FIG.
6b, column 'A' where either test 960 determines there are no
more notes left to be assigned, or loop 965 through990 finds
the first note which is not yet assigned and assigns it to the
group (a group of one) then flags that note as having been
used. Thereafter test 960 will find there are no more notes to
assign and end the subroutine at 995.

If the test in 815 indicates the group is more than one note,
then an outer loop limit is set in 820, an index set in 825, and
test830 checks to see if the looping index has yet incremented
to indicate all possible note sets have been evaluated for this

US 7,728,213 B2
21

particular group size; of course in the first test this isn't so and
aYes is returned. Initialization of the current test for the first
set of notes spanning the current group size is now done; the
pitch range of the current group is set to zero in 835, the
grouping flag to valid in 840, and the inner note index and
inner loop limit are set in 845 and 850. This prepares the stage
for parsing the list of available notes (starting at the highest
pitch or highest MIDI number) to determine the range of
pitches covered by the number of notes in the group. In 855 a
test is made to see if there are any more note groupings to be
evaluated. Of course there are in the first pass so a Yes is
returned and we go to procedure 860 through 880. In test860
we look at the note to which the index points, and to the next
note in the list and if either one has been assigned to a group
already, we set the valid grouping flag to be false in 865, then
go to 870; if neither note has been assigned to a group, we go
directly to 870 and there we calculate the pitch spread for this
pair of notes. In 875 we add that range to whatever range has
already been established (it began at Zero from 835) and in
880 we increment an index, return to 855, and test to see if
more notes have yet to be tested for this group size within the
current list position. If Yes, we repeat 860 through 880, thus
increasing the pitch range by the additional “spread of the
next note. As soon as test 855 returns a No we can store that
pitch range in a list and then set Some indices to continue
checking for the next possible pitch range value based on
starting in the next note of the list. In loop 900 through 920,
we increment down the list of available notes and return to
830 where we repeat the process of calculating the pitch range
across the span of notes equal to the group size, storing that
result and so forth.
When all possible sets of notes in the list have been parsed

to calculate the pitch range for the current group size, test830
will return a No, and the procedure jumps to the procedure in
column “B” of FIG. 6b whereby the actual narrowest pitch
range set of notes for the current group is established. A given
pass through the processing of FIG. 6a will either branch to
FIG. 6a column 'A' (when there is a single-note group) or to
column “B” (when there is a group of 2 or more notes). So it
is from column “A” or “B” that the END occurs once the
group has been assigned its note(s). In column “B” test 1000
checks to see if the Narrowest Pitch Range Index is not equal
to -1. If it is equal to -1, No returns to indicate there are no
more notes to handle and the procedure ends in 1005. Other
wise Yes returns and some values are initialized in 1010 and
1015 to set up a note allocation loop whereby notes from the
now-established narrowest range within the list of notes are
actually assigned to the current group. In test 1020 a test is
made to see if any more notes are left to be assigned to the
current group. If they are Yes returns and in 1030 through
1040 the note is assigned, the index increments in 1045, and
the loop repeats until all the sequential notes in this sized
group are assigned to the current group, at which point test
1020 goes to No and the procedure ends at 1025. At this point
the Narrowest Grouping of more than one note has been
established and populated.

Additive divisi can be used for creative effects within a
single type of instrument (a single section of like instruments)
or for orchestrational assignment of notes to multiple sections
of instruments. If one were using additive divisi in a single
section, it would assign one note to the first path, the second
note to the next path, and so forth. However, additive divisi
may be used to address multiple sections of instruments, and
such sections can be set with specific “priority” values. Paths
(sections) with a priority of “one' will play when one note is
played. Paths (sections) with a priority of “two' will play
when a second note is played, and so forth. If multiple paths

5

10

15

25

30

35

40

45

50

55

60

65

22
share the same priority, these paths will all be allocated the
same note(s). The point is that unlike subtractive divisi where
a constant number of paths is always addressed and these are
allocated among whatever number of notes are played, addi
tive divisi increases the number of paths played as the number
of notes played increases, up to the point where the number of
notes equals the available number of priorities. The key to
Additive Divisi is that it provides an ordering procedure for
sequentially joining instruments into a composition. Additive
Divisi with Overflow provides the means for distributing
notes when the number of notes exceeds the number of addi
tive priority settings one has established for the additive
divisi. Once overflow occurs, subtractive divisi may be
invoked which is why we retain the term “divisi' for the
additive process.
The additive divisi process (without overflow) is depicted

in Process 4 as shown in FIG. 7. This process only applies
when the number of notes played is less than or equal to the
number of priorities available to play them; otherwise we use
Process 5 which includes provisions for note overflow (per
FIGS. 8 and 9). Initially the list of notes is sorted by pitch and
a pointer is aimed at the first note in 1100 and 1105. Then a
test is made to see if any notes remain to be processed in 1110
which, at least on the first pass is going to return a Yes. The
first check is done to see which priority 1 paths need to be
assigned as set up with 1120 through 1130 where, since the
note index has been set at 1, and the current priority is
matched to the note index, priority 1 paths are first to be
processed for potential note assignments. In 1135 we test to
see if any more paths have yet to be processed, and on the first
pass through the process this too will be true and aYes will be
returned, so we go on to the test of 1140 where we see if the
current path priority is equal to the priority were wanting to
allocate. If it is, Yes returns and we distribute the current note
to that path. This means that whatever instruments or players
(or desks of instruments/players) are on the current path are
all now going to play the assigned note in 1145; it could be
many instruments or a solo instrument. It could also be an
entire section of instruments such as “first violins. Since the
Number Of Notes to be played is less than or equal to the
Number Of Paths at this point, there is no subtractive divisi
among instruments. (In the overflow situation described in
Process 5, there may be subtractive divisi within a section as
part of the additive process). We then increment the path
index in 1150. If the test of 1140 indicates the path priority is
not equal to the priority were wanting to allocate, then a No
returns, we don’t distribute notes and insteadwego directly to
1150 and increment the path index. After 1150 the procedure
loops back to test 1135. As long as the path index is less than
or equal to the number of paths (with the current priority) the
process of 1135 through 1150 will continue to allocate the
current note to each such path. When 1135 returns a No, this
indicates all paths with the current priority have had the note
allocated to them, so the Note Index increments in 1155, and
the procedure loops back up to 1110 to test if any more notes
remain to be processed. A Yes continues through the alloca
tion process of 1120 through 1150 allocating the next note to
whatever paths have the next priority value, and a No indi
cates all notes have been allocated and the process ends with
1115.

Additive divisi overflow differs from subtractive divisi
overflow in that it’s not defined by having more notes than
paths, but by having more notes than priorities. Each path is
assigned a priority, but these are not exclusive; multiple paths
can share the same priority. So for example consider a situa
tion with 4 notes and 4 paths. In subtractive divisi this would
not run into overflow, but in additive divisi it might, depend

US 7,728,213 B2
23

ing upon whether two or more paths share the same priority.
If the paths are set such that there are only 1 or 2 or 3 priorities,
then the 4 notes would exceed the number of priorities and an
additive divisi overflow condition would exist. If each path
had a different priority, then overflow would not occur. The
procedure for additive overflow is depicted by Process 5 in
FIGS. 8a, 8b, 8c. 9a and 9b and is very similar to that for
subtractive divisi. In fact, the major differences are (a) a lack
of concern for top versus bottom weighting, and (b) tests
which look for the number of available priorities rather than
the number of available paths. Because the procedures are
otherwise almost the same as those described for FIGS. 5a,
5b, 5c., 6a and 6b we won’t discuss them step-by-step here.

FIGS. 10A and 10B show how subtractive divisi processes
deal with notes released from a held chord, as contrasted to
the initiation of a new note or chord. This process applies to all
subtractive divisi methods (whether top or bottom weighted,
with or without note overflow), but not to any additive divisi
methods. The concept is that in Subtractive divisi, as soon as
one or more notes is being played, all available paths (chan
nels) are instructed to play, i.e., to Sound a note. The specific
allocations of channels to notes is, of course, the nature of the
subtractive divisi methods just described herein. There is a
situation, however, that occurs when a chord (i.e., a group of
two or more simultaneously sounding notes) is being played,
and then a subgroup, i.e., at least one of those notes, is
released (no longer played) while at least one remainder note
of the group continues to Sound. In this case, the channels
(paths) that had been previously allocated to the subgroup of
released note(s) are no longer playing those notes. Correct
ensemble behavior, that is correct orchestration, calls for
these now disused channels to be quickly reassigned to play
whatever note(s) remain in play from the existing chord.
Therefore, it is desirable to re-parse the remaining note(s)and
determine which channels will now play them. However, it
would not be musically desirable to simply issue new note-on
commands to any reallocated channels; as doing so would
cause a fresh “attack' for all such reallocated channels, and
the effect would be as though the existing notes were played
again. That is, instead of a piano player holding down a key
after letting up other fingers, it would be as if he or she let go
of all the keys then came back down on the key(s) that were
intended to continue Sounding.
The non-musically correct rejoining of reallocated chan

nels to notes still in play would occur if all notes initiated with
a normal attack, which might also be described as a "hard
attack, although in some cases it's not especially hard or
Sudden. Live musicians who play in ensemble, for instance a
section of violinists, naturally control their playing style
when they abandon a released note of a chord and join other
players who are continuing to play existing notes. In Such
cases, the players who are joining the remaining notes will
Softly begin playing the new (for them) notes. A violinist
therefore would softly begin stroking the strings with the bow,
and buildup to the desired intensity instead of using a sudden
and strong bow motion. A trumpet player might Softly blow
without tongue accentuation, building up his breath to
strengthen the note so it seamlessly joins other trumpeters. A
musical synthesizer or sampler can be set up to have both
normal and soft-attacked notes using various means, but Such
notes must be invoked appropriately if the musicality of real
located channels upon note release is to be achieved. The
process of Step 10, illustrates one example of how to instruct
the synthesizer or sampler which type of note attack to use,
normal or soft. Functionally, Step 10 may be placed at the

5

10

15

25

30

35

40

45

50

55

60

65

24
start in the sequence of events, but it is described here last
because it is easier to do so after the initial divisiprocesses has
been described.

In the example of FIGS. 10A and 10B, the soft attack/
normal attack designation process involves setting up four
new arrays 1800, which can be thought of as indexed matrices
in which values are stored or altered during the soft attack
processing. Moreover, three lists are generated by counting
the items as they are used to populate three of these arrays: the
count of how many notes have just been released is based on
how many notes are in the ListOfNotesOff and is saved as a
variable NumberOfNotesOff the count of how many notes
have just been placed in the ListOfNewNotes.On is saved as
the variable NumberOfNewNotesOn, and the count of how
many notes are in the ListOfNotesSounding is saved as the
variable NumberOfNotesSounding.

Starting at 1805, the process initializes all the ListOf
SoftAttacks flags as being false in the process of loop 1810
through 1820, after which the next loop of steps from 1825
through 1875 examines the ListOfNotesOff and removes
these notes from the ListOfNotesSounding in order to gener
ate an updated list of those notes still playing. It also removes
the notes off from the ListOfSoftAttacks. When all the
ListOfNotesOff has been processed, test 1830 in FIG. 10A
returns a No and the ensuing loop in FIG. 10B of 1880
through 1895 sets all remaining ListOfNotesSounding (after
the NotesOff have been removed) to have soft attack flags.
When all the ListOfNotesSounding has been processed, test
1885 returns a No and the procedure moves on to step 1900.

Step 1900 and 1905 set the NoteIndex and Note0nIndex
values so that test 1910 can determine if any NewNotes.On
remain to be processed. If there are any remaining new notes
on, aYes returns and loop 1910 through 1935 iterates through
the ListOfNewNotesOn assigning false values to the soft
attack flags (1930) for any new notes. This is because if a new
note is being Sounded, any channel(s) Subsequently assigned
to play Such a note should play with a normal attack. When no
NewNotes.On remain to be processed, test 1910 returns a No
and the assignment of true or false “soft attack flags has been
completed. At this point the ListOfNotes is sorted 1940
according to pitch (highest numbered notes by MIDI value
have the highest pitch) and this sorted list becomes the new
ListOfNotes used by the subsequent processes for channel
allocation. The soft attack determination process ends at
1945.

FIG.11 is a block diagram illustrating another embodiment
of a note allocation processor according to the invention. The
note allocation processor 1102 of FIG. 11 is somewhat dif
ferent from note allocation processor 102 of FIG. 1 and is
more Suitable for performing the note allocation processes
illustrated in FIGS. 4A-10B. Most notably, note allocation
processor 1102 of FIG. 11 lacks note assignment tables:
rather, the note allocation processor 1102 performs channel
allocation according to the processes described with refer
ence to FIGS. 4A-10B, using various counters and registers.
To illustrate, concurrent reference is made to the process of
FIGS. 4A-4B and to FIG. 11. When the Soft attack feature is
used, at step 400 the CPU 1104 assigns the attack flags 1150.
Then, at step 402 the CPU 1104 sets the channel register 1130
to the total number of available paths. This may depend on the
input device, the player, or user's choice. At step 405 the CPU
1104 sets channels left register 1145 to equal the value in
channel register 1130. At step 410 the CPU 1104 lists the
channels according to priority in channel list register 1135. At
step 415 CPU 1104 detects the total number of notes to be
played simultaneously and sets that number in notes register
1105. Then the CPU 1104 sets current note register 1120 to

US 7,728,213 B2
25

value 1 at step 420, and lists the notes according to pitch order
in notes list register 1115 at step 425. At this point all of the
values in the various registers are ready for the CPU 1104 to
begin the process of Step 1, i.e., the process beginning with
step 430. In the process of FIGS. 4A and 4B, it is shown that
the current channel register 1140 is initialized to 1 at step 470,
i.e., after the process starting at step 430 is completed. How
ever, it should be appreciated that this can be performed
before step 430.

It should be noted that when performing overflow process
ing, CPU 1104 also initializes the notes left register 1125 to
equal the value in the notes register 1105, as exemplified in
FIG. 5A, step 520. However, this step can be performed
anytime at a beginning of a process when the CPU 1104
initializes the registers.

While the invention has been described with reference to
particular embodiments thereof, it is not limited to those
embodiments. Specifically, various variations and modifica
tions may be implemented by those of ordinary skill in the art
without departing from the invention’s spirit and scope, as
defined by the appended claims.
We claim the following:
1. A process for assigning notes to be voiced by selected

channels, comprising:
examining in real time all notes that are to be voiced simul

taneously;
using a predefined iterative process to assign specific chan

nels from channels available to Voice the notes to spe
cific notes to be played;

wherein said iterative process comprises selecting a first
note from the notes to be voiced and using a predefined
assignment process to assign the number of channels to
play the first note and to allocate any remainder channels
to be assigned in Subsequent operations of said iterative
process.

2. The process of claim 1, wherein said iterative process
further comprises a step of arranging the notes to be voice
according to a predefined order.

3. The process of claim 2, wherein said order is according
to ascending pitch of said notes.

4. The process according to claim 3, wherein the first note
is selected as the highest pitch note in said order, and wherein
Subsequent iterations select consecutive notes according to
descending pitch order.

5. The process according to claim 3, wherein the first note
is selected as the lowest pitch note in said order, and wherein
Subsequent iterations select consecutive notes according to
ascending pitch order.

6. The process according to claim 3, further comprising
assigning priority level to each of said channels.

7. The process according to claim 6, wherein the first note
is assigned to the channel having the highest priority level.
and Subsequent iterations assign notes to consecutive chan
nels according to descending priority levels.

8. The process according to claim 6, wherein when the
number of notes to be sound is larger than the number of
channels available to play all notes, the assignment proceeds
according to the iterative process until all of the channels have
been assigned to at least one note and remaining notes are
assigned to channels according to priority levels of said chan
nels.

9. The process of claim 1, further comprising
examining in real time whether a release note event occurs,

said release note event constituting an instruction to
cease Voicing a subgroup of the notes to be voiced simul
taneously, and if a release note event occurs, using a
predefined reassignment process to assign a remainder

10

15

25

30

35

40

45

50

55

60

65

26
note from said notes to be voiced simultaneously to a
channel previously voicing a note from said subgroup.

10. The process according to claim 9, wherein said reas
signment process is an iterative process that starts with the
highest pitch note, and wherein Subsequent iterations select
consecutive notes according to descending pitch order.

11. The process according to claim 10, wherein said reas
signment further comprises an indication of soft attack, said
Soft attack indication comprising an instruction to Sound the
note by gradually increasing its amplitude.

12. The process according to claim 9, wherein said reas
signment process is an iterative process that starts with the
lowest pitch note, and wherein Subsequent iterations select
consecutive notes according to ascending pitch order.

13. The process according to claim 12, wherein said reas
signment further comprises an indication of soft attack, said
Soft attack indication comprising an instruction to Sound the
note by gradually increasing its amplitude.

14. The process according to claim 1, further comprising:
for each composition to be played, setting the number of

channels available to remain fixed throughout the com
position; and,

wherein when the number of notes to be sound is larger
than the number of channels available to voice the notes,
repeating the predefined assignment process until all of
the channels have been assigned, and ignoring any
remaining notes thereafter.

15. The process according to claim 1, wherein upon receiv
ing a new note instruction, the process further comprises
performing a furtheriterative process to select for each chan
nel one of the following actions:

i. continue to play the same note;
ii. play a newly assigned note;
iii. play a note that has been previously assigned to another

channel;
iv. play no note.
16. A method for emulating an orchestration of a musical

piece, comprising:
defining a plurality of orchestra sections, each section com

prising a predefined number of instruments;
obtaining note samples using Subsections of each of the

orchestra sections;
assigning a fixed number of channels to each of said

orchestra sections, wherein for each orchestra section
said fixed number is equal to the predefined number of
instruments;

continuously performing a real time examination for note
instruction input from an input device; and,

upon receiving an Sound input from the input device, per
forming an iterative assignment process to assign each
of said fixed number of channels to sound at least one of
said note samples.

17. The method of claim 16, wherein when said note
instruction input comprises a plurality of notes to be played
simultaneously, the method further comprises ordering the
notes to be played simultaneously according to pitch order
prior to performing the iterative assignment process.

18. The method according to claim 17, wherein when said
note input comprises a new note instruction, the method fur
ther comprises performing a furtheriterative process to select
for each channel one of the following actions:

i. continue to play the same note;
ii. play a newly assigned note using a hard attack;
iii. play a note that has been previously assigned to another

channel using a soft attack;
iv. play no note.

US 7,728,213 B2
27 28

19. The method according to claim 17, wherein when the channel playing the currently playing note to play one of
new note instruction comprise a note release input for a cur- the notes still to be played, to thereby having said chan
rently playing note, the method further comprises: nels play the notes still to be played using a soft attack.

determining whether any notes are still to be played and, if
So, using areassignment iterative process to reassign any k

